forked from lhatsk/AlphaLink
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict_with_crosslinks.py
569 lines (457 loc) · 17.6 KB
/
predict_with_crosslinks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from copy import deepcopy
from datetime import date
import logging
import math
import numpy as np
import os
logging.basicConfig()
logger = logging.getLogger(__file__)
logger.setLevel(level=logging.INFO)
import pickle
from pytorch_lightning.utilities.deepspeed import (
convert_zero_checkpoint_to_fp32_state_dict
)
import random
import sys
import time
import torch
import re
torch_versions = torch.__version__.split(".")
torch_major_version = int(torch_versions[0])
torch_minor_version = int(torch_versions[1])
if(
torch_major_version > 1 or
(torch_major_version == 1 and torch_minor_version >= 12)
):
# Gives a large speedup on Ampere-class GPUs
torch.set_float32_matmul_precision("high")
torch.set_grad_enabled(False)
from openfold.config_crosslinks import model_config, NUM_RES
from openfold.data import templates, feature_pipeline, data_pipeline
from openfold.model.model import AlphaFold
from openfold.model.torchscript import script_preset_
from openfold.np import residue_constants, protein
import openfold.np.relax.relax as relax
from openfold.utils.import_weights import (
import_jax_weights_,
)
from openfold.utils.tensor_utils import (
tensor_tree_map,
)
from scripts.utils import add_data_args
from openfold.data.msa_subsampling import subsample_msa_sequentially, get_eff
TRACING_INTERVAL = 50
def precompute_alignments(tag, seq, alignment_dir, args):
tmp_fasta_path = os.path.join(args.output_dir, f"tmp_{os.getpid()}.fasta")
with open(tmp_fasta_path, "w") as fp:
fp.write(f">{tag}\n{seq}")
local_alignment_dir = os.path.join(alignment_dir, tag)
if(args.use_precomputed_alignments is None and not os.path.isdir(local_alignment_dir)):
logger.info(f"Generating alignments for {tag}...")
os.makedirs(local_alignment_dir)
alignment_runner = data_pipeline.AlignmentRunner(
jackhmmer_binary_path=args.jackhmmer_binary_path,
hhblits_binary_path=args.hhblits_binary_path,
hhsearch_binary_path=args.hhsearch_binary_path,
uniref90_database_path=args.uniref90_database_path,
mgnify_database_path=args.mgnify_database_path,
bfd_database_path=args.bfd_database_path,
uniclust30_database_path=args.uniclust30_database_path,
pdb70_database_path=args.pdb70_database_path,
no_cpus=args.cpus,
)
alignment_runner.run(
tmp_fasta_path, local_alignment_dir
)
else:
logger.info(
f"Using precomputed alignments for {tag} at {alignment_dir}..."
)
# Remove temporary FASTA file
os.remove(tmp_fasta_path)
def round_up_seqlen(seqlen):
return int(math.ceil(seqlen / TRACING_INTERVAL)) * TRACING_INTERVAL
def run_model(model, batch, tag, args):
with torch.no_grad():
# Disable templates if there aren't any in the batch
model.config.template.enabled = model.config.template.enabled and any([
"template_" in k for k in batch
])
logger.info(f"Running inference for {tag}...")
t = time.perf_counter()
out = model(batch)
inference_time = time.perf_counter() - t
logger.info(f"Inference time: {inference_time}")
return out
def prep_output(out, batch, feature_dict, feature_processor, args):
plddt = out["plddt"]
mean_plddt = np.mean(plddt)
plddt_b_factors = np.repeat(
plddt[..., None], residue_constants.atom_type_num, axis=-1
)
if(args.subtract_plddt):
plddt_b_factors = 100 - plddt_b_factors
# Prep protein metadata
template_domain_names = []
template_chain_index = None
if(feature_processor.config.common.use_templates and "template_domain_names" in feature_dict):
template_domain_names = [
t.decode("utf-8") for t in feature_dict["template_domain_names"]
]
# This works because templates are not shuffled during inference
template_domain_names = template_domain_names[
:feature_processor.config.predict.max_templates
]
if("template_chain_index" in feature_dict):
template_chain_index = feature_dict["template_chain_index"]
template_chain_index = template_chain_index[
:feature_processor.config.predict.max_templates
]
no_recycling = feature_processor.config.common.max_recycling_iters
remark = ', '.join([
f"no_recycling={no_recycling}",
f"max_templates={feature_processor.config.predict.max_templates}",
f"config_preset=model_5_ptm",
])
# For multi-chain FASTAs
ri = feature_dict["residue_index"]
chain_index = (ri - np.arange(ri.shape[0])) / args.multimer_ri_gap
chain_index = chain_index.astype(np.int64)
cur_chain = 0
prev_chain_max = 0
for i, c in enumerate(chain_index):
if(c != cur_chain):
cur_chain = c
prev_chain_max = i + cur_chain * args.multimer_ri_gap
batch["residue_index"][i] -= prev_chain_max
unrelaxed_protein = protein.from_prediction(
features=batch,
result=out,
b_factors=plddt_b_factors,
chain_index=chain_index,
remark=remark,
parents=template_domain_names,
parents_chain_index=template_chain_index,
)
return unrelaxed_protein
def parse_fasta(data):
data = re.sub('>$', '', data, flags=re.M)
lines = [
l.replace('\n', '')
for prot in data.split('>') for l in prot.strip().split('\n', 1)
][1:]
tags, seqs = lines[::2], lines[1::2]
tags = [t.split()[0] for t in tags]
return tags, seqs
def generate_feature_dict(
tags,
seqs,
alignment_dir,
data_processor,
args,
):
tmp_fasta_path = os.path.join(args.output_dir, f"tmp_{os.getpid()}.fasta")
if len(seqs) == 1:
tag = tags[0]
seq = seqs[0]
with open(tmp_fasta_path, "w") as fp:
fp.write(f">{tag}\n{seq}")
local_alignment_dir = os.path.join(alignment_dir, tag)
feature_dict = data_processor.process_fasta(
fasta_path=tmp_fasta_path, alignment_dir=local_alignment_dir
)
else:
with open(tmp_fasta_path, "w") as fp:
fp.write(
'\n'.join([f">{tag}\n{seq}" for tag, seq in zip(tags, seqs)])
)
feature_dict = data_processor.process_multiseq_fasta(
fasta_path=tmp_fasta_path, super_alignment_dir=alignment_dir,
)
# Remove temporary FASTA file
os.remove(tmp_fasta_path)
return feature_dict
def get_model_basename(model_path):
return os.path.splitext(
os.path.basename(
os.path.normpath(model_path)
)
)[0]
def make_output_directory(output_dir, model_name, multiple_model_mode):
if multiple_model_mode:
prediction_dir = os.path.join(output_dir, "predictions", model_name)
else:
prediction_dir = os.path.join(output_dir, "predictions")
os.makedirs(prediction_dir, exist_ok=True)
return prediction_dir
def count_models_to_evaluate(openfold_checkpoint_path, jax_param_path):
model_count = 0
if openfold_checkpoint_path:
model_count += len(openfold_checkpoint_path.split(","))
if jax_param_path:
model_count += len(jax_param_path.split(","))
return model_count
def load_models_from_command_line(args, config):
# Create the output directory
model = AlphaFold(config)
model = model.eval()
checkpoint_basename = get_model_basename(args.checkpoint_path)
sd = torch.load(args.checkpoint_path)['ema']['params']
# sd = {("model." + k):v for k,v in sd.items()}
model.load_state_dict(sd)
model = model.to(args.model_device)
logger.info(
f"Loaded OpenFold parameters at {args.checkpoint_path}..."
)
output_directory = make_output_directory(args.output_dir, checkpoint_basename, False)
return model, output_directory
def list_files_with_extensions(dir, extensions):
return [f for f in os.listdir(dir) if f.endswith(extensions)]
def load_crosslinks(crosslink_csv, fdr, seq, distograms=False):
links = np.loadtxt(crosslink_csv)#,delimiter=',')
if len(links.shape) == 1:
links = np.array([links])
n = len(seq)
crosslinks = np.zeros((n,n,1))
grouping = np.zeros((n,n,1))
groups = np.arange(len(links))+1 # 0th group is no crosslink
if distograms:
crosslinks = np.zeros((n,n,128))
for row in links:
i = int(row[0]) - 1
j = int(row[1]) - 1
crosslinks[i,j] = crosslinks[j,i] = row[2:]
else:
if links.shape[1] == 3:
for i_, (i,j,fdr) in enumerate(links):
i = int(i) - 1
j = int(j) - 1
crosslinks[i,j,0] = crosslinks[j,i,0] = 1 - fdr
grouping[i,j,0] = grouping[j,i,0] = groups[i_]
else:
for i_, (i,j) in enumerate(links):
i = int(i) - 1
j = int(j) - 1
crosslinks[i,j,0] = crosslinks[j,i,0] = 1 - fdr
grouping[i,j,0] = grouping[j,i,0] = groups[i_]
logger.info(
f"Loaded {np.sum(np.max(crosslinks,axis=-1) > 0) // 2} restraints..."
)
return crosslinks, grouping
def main(args):
# Create the output directory
os.makedirs(args.output_dir, exist_ok=True)
config = model_config('model_5_ptm')
if args.distograms:
config.model.xl_embedder.distograms = True
# template_featurizer = templates.TemplateHitFeaturizer(
# mmcif_dir=args.template_mmcif_dir,
# max_template_date=args.max_template_date,
# max_hits=config.data.predict.max_templates,
# kalign_binary_path=args.kalign_binary_path,
# release_dates_path=args.release_dates_path,
# obsolete_pdbs_path=args.obsolete_pdbs_path
# )
data_processor = data_pipeline.DataPipeline(
template_featurizer=None,
)
output_dir_base = args.output_dir
random_seed = args.data_random_seed
if random_seed is None:
random_seed = random.randrange(2**32)
np.random.seed(random_seed)
torch.manual_seed(random_seed + 1)
feature_processor = feature_pipeline.FeaturePipeline(config.data)
if not os.path.exists(output_dir_base):
os.makedirs(output_dir_base)
if args.use_precomputed_alignments is None:
alignment_dir = os.path.join(output_dir_base, "alignments")
else:
alignment_dir = args.use_precomputed_alignments
with open(args.fasta, "r") as fp:
data = fp.read()
tag, seq = parse_fasta(data)
tag = tag[0]
seq = seq[0]
# feature_dicts = {}
model, output_directory = load_models_from_command_line(args, config)
cur_tracing_interval = 0
output_name = f'{tag}_model_5_ptm_crosslinks'
if args.output_postfix is not None:
output_name = f'{output_name}_{args.output_postfix}'
if args.features:
feature_dict = pickle.load(open(args.features,'rb'))
else:
# Does nothing if the alignments have already been computed
precompute_alignments(tag, seq, alignment_dir, args)
feature_dict = generate_feature_dict(
[tag],
[seq],
alignment_dir,
data_processor,
args,
)
if args.crosslinks.endswith('.pt'):
crosslinks = torch.load(args.crosslinks)
feature_dict['xl'] = crosslinks['xl']
if args.distograms:
feature_dict['xl_grouping'] = np.zeros((crosslinks['xl'].shape[0], crosslinks['xl'].shape[1],1))
else:
feature_dict['xl_grouping'] = crosslinks['grouping']
elif args.crosslinks.endswith('.csv'):
crosslinks, grouping = load_crosslinks(args.crosslinks, args.fdr, seq, args.distograms)
feature_dict['xl'] = crosslinks
feature_dict['xl_grouping'] = grouping
else:
print("Crosslinks need to be either given as a CSV or already as a tensor")
sys.exit(0)
# subsample MSAs to specified Neff
msa = feature_dict['msa']
if args.neff:
logger.info(
f"Subsampling MSA to Neff={args.neff}..."
)
indices = subsample_msa_sequentially(msa, neff=args.neff)
feature_dict['msa'] = msa[indices]
feature_dict['deletion_matrix_int'] = feature_dict['deletion_matrix_int'][indices]
processed_feature_dict = feature_processor.process_features(
feature_dict, mode='predict',
)
processed_feature_dict = {
k:torch.as_tensor(v, device=args.model_device)
for k,v in processed_feature_dict.items()
}
out = run_model(model, processed_feature_dict, tag, args)
# Toss out the recycling dimensions --- we don't need them anymore
processed_feature_dict = tensor_tree_map(
lambda x: np.array(x[..., -1].cpu()),
processed_feature_dict
)
out = tensor_tree_map(lambda x: np.array(x.cpu()), out)
plddt = out["plddt"]
plddt_b_factors = np.repeat(
plddt[..., None], residue_constants.atom_type_num, axis=-1
)
unrelaxed_protein = protein.from_prediction(
features=processed_feature_dict,
result=out,
b_factors=plddt_b_factors
)
unrelaxed_output_path = os.path.join(
output_directory, f'{output_name}_unrelaxed.pdb'
)
with open(unrelaxed_output_path, 'w') as fp:
fp.write(protein.to_pdb(unrelaxed_protein))
logger.info(f"Output written to {unrelaxed_output_path}...")
if not args.skip_relaxation:
amber_relaxer = relax.AmberRelaxation(
**config.relax
)
relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
# Save the relaxed PDB.
relaxed_output_path = os.path.join(
output_directory, f'{output_name}_relaxed.pdb'
)
with open(relaxed_output_path, 'w') as fp:
fp.write(relaxed_pdb_str)
logger.info(f"Relaxed output written to {relaxed_output_path}...")
if args.save_outputs:
output_dict_path = os.path.join(
output_directory, f'{output_name}_output_dict.pkl'
)
with open(output_dict_path, "wb") as fp:
pickle.dump(out, fp, protocol=pickle.HIGHEST_PROTOCOL)
logger.info(f"Model output written to {output_dict_path}...")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"fasta", type=str,
help="Path to FASTA file, one sequence per file"
)
parser.add_argument(
"crosslinks", type=str,
)
parser.add_argument(
"--fdr", type=float, default=0.05,
help="""Dataset-level false discovery rate (FDR), only used if link-level FDR is not provided"""
)
parser.add_argument(
"--use_precomputed_alignments", type=str, default=None,
help="""Path to alignment directory. If provided, alignment computation
is skipped and database path arguments are ignored."""
)
parser.add_argument(
"--output_dir", type=str, default=os.getcwd(),
help="""Name of the directory in which to output the prediction""",
)
parser.add_argument(
"--model_device", type=str, default="cuda:0",
help="""Name of the device on which to run the model. Any valid torch
device name is accepted (e.g. "cpu", "cuda:0")"""
)
parser.add_argument(
"--checkpoint_path", type=str, default='resources/AlphaLink_params/finetuning_model_5_ptm_CACA_10A.pt',
help="""Path to OpenFold checkpoint (.pt file)"""
)
parser.add_argument(
"--save_outputs", action="store_true", default=True,
help="Whether to save all model outputs, including embeddings, etc."
)
parser.add_argument(
"--features", type=str,
help="Feature pickle"
)
parser.add_argument(
"--distograms", action="store_true", default=False,
help="Switch to distogram mode"
)
parser.add_argument(
"--cpus", type=int, default=4,
help="""Number of CPUs with which to run alignment tools"""
)
parser.add_argument(
"--preset", type=str, default='full_dbs',
choices=('reduced_dbs', 'full_dbs')
)
parser.add_argument(
"--output_postfix", type=str, default=None,
help="""Postfix for output prediction filenames"""
)
parser.add_argument(
"--data_random_seed", type=int, default=None
)
parser.add_argument(
"--skip_relaxation", action="store_true", default=False,
)
parser.add_argument(
"--neff", type=float,
help="""MSAs are subsampled to specified Neff"""
)
parser.add_argument(
"--subtract_plddt", action="store_true", default=False,
help=""""Whether to output (100 - pLDDT) in the B-factor column instead
of the pLDDT itself"""
)
add_data_args(parser)
args = parser.parse_args()
if(args.model_device == "cpu" and torch.cuda.is_available()):
logging.warning(
"""The model is being run on CPU. Consider specifying
--model_device for better performance"""
)
main(args)