You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I convert the onnx one to a torch model, it works successfully and can make inference.
However, when I set the model to a trainable one, it shows ValueError: optimizer got an empty parameter list.
Here is the code :
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
[/tmp/ipykernel_32945/3047762149.py](https://file+.vscode-resource.vscode-cdn.net/tmp/ipykernel_32945/3047762149.py) in
1 loss_fn = torch.nn.MSELoss()
----> 2 optimizer = torch.optim.Adam(torch_model_1.parameters())
[~/anaconda3/envs/dpc/lib/python3.10/site-packages/torch/optim/adam.py](https://file+.vscode-resource.vscode-cdn.net/media/lk/lksgcc/DL_lk/202205_RZ_GAN%E6%A8%A1%E5%9E%8B/model/EvoOpt/~/anaconda3/envs/dpc/lib/python3.10/site-packages/torch/optim/adam.py) in __init__(self, params, lr, betas, eps, weight_decay, amsgrad, foreach, maximize, capturable, differentiable, fused)
31 maximize=maximize, foreach=foreach, capturable=capturable,
32 differentiable=differentiable, fused=fused)
---> 33 super().__init__(params, defaults)
34
35 if fused:
[~/anaconda3/envs/dpc/lib/python3.10/site-packages/torch/optim/optimizer.py](https://file+.vscode-resource.vscode-cdn.net/media/lk/lksgcc/DL_lk/202205_RZ_GAN%E6%A8%A1%E5%9E%8B/model/EvoOpt/~/anaconda3/envs/dpc/lib/python3.10/site-packages/torch/optim/optimizer.py) in __init__(self, params, defaults)
185 param_groups = list(params)
186 if len(param_groups) == 0:
--> 187 raise ValueError("optimizer got an empty parameter list")
188 if not isinstance(param_groups[0], dict):
189 param_groups = [{'params': param_groups}]
ValueError: optimizer got an empty parameter list
Python 3.10.0
onnx2torch 1.5.13
onnx 1.15.0
torch 2.0.1+cu117
tf2onnx 1.16.0 toymodel.zip
I have uploaded my onnx model. Can anyone give me some help? Thanks!
The text was updated successfully, but these errors were encountered:
I build a keras model and save it as onnx form.
I use tf2onnx to convert the model.
When I convert the onnx one to a torch model, it works successfully and can make inference.
However, when I set the model to a trainable one, it shows ValueError: optimizer got an empty parameter list.
Here is the code :
GraphModule(
(initializers): Module()
(sequential/mono_dense/MatMul): OnnxMatMul()
(sequential/mono_dense/PartitionedCall/split): OnnxSplit13()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/sub_1): OnnxBinaryMathOperation()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/PartitionedCall_1/Neg): OnnxNeg()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/PartitionedCall_1/Elu): ELU(alpha=1.0)
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/PartitionedCall_1/Neg_1): OnnxNeg()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/ones_like/Shape): OnnxShape()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/ones_like/Shape__7): OnnxCast()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/ones_like__8): OnnxCast()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/ones_like): OnnxExpand()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/mul): OnnxBinaryMathOperation()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/Elu): ELU(alpha=1.0)
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/add_1): OnnxBinaryMathOperation()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/add): OnnxBinaryMathOperation()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/Elu_1): ELU(alpha=1.0)
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/sub): OnnxBinaryMathOperation()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/LessEqual): OnnxCompare()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/SelectV2__9): OnnxCast()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/SelectV2__15): OnnxBinaryMathOperation()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/SelectV2__11): OnnxNot()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/SelectV2__13): OnnxCast()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/SelectV2__18): OnnxBinaryMathOperation()
(sequential/mono_dense/PartitionedCall/PartitionedCall_1/SelectV2): OnnxBinaryMathOperation()
(sequential/mono_dense/PartitionedCall/PartitionedCall/Neg): OnnxNeg()
(sequential/mono_dense/PartitionedCall/PartitionedCall/Elu): ELU(alpha=1.0)
(sequential/mono_dense/PartitionedCall/PartitionedCall/Neg_1): OnnxNeg()
(sequential/mono_dense/PartitionedCall/Elu): ELU(alpha=1.0)
(sequential/mono_dense/PartitionedCall/concat): OnnxConcat()
(sequential/mono_dense_1/MatMul): OnnxMatMul()
(sequential/mono_dense_1/PartitionedCall/split): OnnxSplit13()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/sub_1): OnnxBinaryMathOperation()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/PartitionedCall_1/Neg): OnnxNeg()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/PartitionedCall_1/Elu): ELU(alpha=1.0)
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/PartitionedCall_1/Neg_1): OnnxNeg()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/ones_like/Shape): OnnxShape()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/ones_like/Shape__22): OnnxCast()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/ones_like__23): OnnxCast()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/ones_like): OnnxExpand()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/mul): OnnxBinaryMathOperation()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/Elu): ELU(alpha=1.0)
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/add_1): OnnxBinaryMathOperation()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/add): OnnxBinaryMathOperation()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/Elu_1): ELU(alpha=1.0)
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/sub): OnnxBinaryMathOperation()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/LessEqual): OnnxCompare()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/SelectV2__26): OnnxNot()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/SelectV2__28): OnnxCast()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/SelectV2__33): OnnxBinaryMathOperation()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/SelectV2__24): OnnxCast()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/SelectV2__30): OnnxBinaryMathOperation()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall_1/SelectV2): OnnxBinaryMathOperation()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall/Neg): OnnxNeg()
(sequential/mono_dense_1/PartitionedCall/PartitionedCall/Elu): ELU(alpha=1.0)
(sequential/mono_dense_1/PartitionedCall/PartitionedCall/Neg_1): OnnxNeg()
(sequential/mono_dense_1/PartitionedCall/Elu): ELU(alpha=1.0)
(sequential/mono_dense_1/PartitionedCall/concat): OnnxConcat()
(sequential/mono_dense_2/MatMul): OnnxMatMul()
(sequential/mono_dense_2/PartitionedCall/split): OnnxSplit13()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/sub_1): OnnxBinaryMathOperation()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/PartitionedCall_1/Neg): OnnxNeg()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/PartitionedCall_1/Neg_1): OnnxNeg()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/ones_like/Shape): OnnxShape()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/ones_like/Shape__37): OnnxCast()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/ones_like__38): OnnxCast()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/ones_like): OnnxExpand()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/mul): OnnxBinaryMathOperation()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/add_1): OnnxBinaryMathOperation()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/add): OnnxBinaryMathOperation()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/sub): OnnxBinaryMathOperation()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/LessEqual): OnnxCompare()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/SelectV2__41): OnnxNot()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/SelectV2__43): OnnxCast()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/SelectV2__48): OnnxBinaryMathOperation()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/SelectV2__39): OnnxCast()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/SelectV2__45): OnnxBinaryMathOperation()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall_1/SelectV2): OnnxBinaryMathOperation()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall/Neg): OnnxNeg()
(sequential/mono_dense_2/PartitionedCall/PartitionedCall/Neg_1): OnnxNeg()
(sequential/mono_dense_2/PartitionedCall/concat): OnnxConcat()
)
this shows:
Python 3.10.0
onnx2torch 1.5.13
onnx 1.15.0
torch 2.0.1+cu117
tf2onnx 1.16.0
toymodel.zip
I have uploaded my onnx model. Can anyone give me some help? Thanks!
The text was updated successfully, but these errors were encountered: