-
Notifications
You must be signed in to change notification settings - Fork 836
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
unable to reproduce results of Market1501 based on SBS(R50-ibn) results #439
Comments
Below is my training configs: sys.platform linux PyTorch built with:
[03/22 09:47:03 fastreid]: Command line arguments: Namespace(config_file='./configs/Market1501/sbs_R50-ibn.yml', dist_url='tcp://127.0.0.1:49152', eval_only=False, machine_rank=0, num_gpus=2, num_machines=1, opts=[], resume=False) MODEL: DATASETS: OUTPUT_DIR: logs/market1501/sbs_R50-ibn [03/22 09:47:03 fastreid]: Running with full config: |
inferece accuracy is also far lower than the accuracy posted in the model zone. (fastreid) root@sj_docker1_117:/home/wesine/data_8tb_3/sj/work/reid/fast-reid $ cd /home/wesine/data_8tb_3/sj/work/reid/fast-reid ; env PYTHONIOENCODING=UTF-8 PYTHONUNBUFFERED=1 /root/anaconda3/envs/fastreid/bin/python /root/.vscode-server/extensions/ms-python.python-2020.2.64397/pythonFiles/ptvsd_launcher.py --default --nodebug --client --host localhost --port 41755 /home/wesine/data_8tb_3/sj/work/reid/fast-reid/tools/train_net.py --config-file ./configs/Market1501/sbs_R50-ibn.yml --eval-only MODEL.WEIGHTS logs/market1501/sbs_R50-ibn/model_best.pth MODEL.DEVICE cuda:0 sys.platform linux PyTorch built with:
[03/22 11:49:04 fastreid]: Command line arguments: Namespace(config_file='./configs/Market1501/sbs_R50-ibn.yml', dist_url='tcp://127.0.0.1:49152', eval_only=True, machine_rank=0, num_gpus=1, num_machines=1, opts=['MODEL.WEIGHTS', 'logs/market1501/sbs_R50-ibn/model_best.pth', 'MODEL.DEVICE', 'cuda:0'], resume=False) MODEL: DATASETS: OUTPUT_DIR: logs/market1501/sbs_R50-ibn [03/22 11:49:04 fastreid]: Running with full config: |
@L1aoXingyu |
hello, have you loaded pretrained model successfully ? |
@sijun-zhou You can firstly try to use 1 GPU to reproduce the results in the model zoo. |
hi gmt710 , And i pasted the snippet of the above log here. You can have a check, including missing keys and keys that not used: ###################################################### |
@L1aoXingyu Hi, L1aoXingyu, BTW. I don't quite understand what does "you need to tune batch size twice" mean, if I want to use 2 GPUs. Could you plz give me a more specific guidelines or description? Thanks a lot! |
It means if you want to train a model with 2 GPUs, you need to tune the batch size from 64 to 128. |
@L1aoXingyu |
|
@L1aoXingyu |
@sky186 是不是 model 没有 load 进去呢? |
@L1aoXingyu |
@sky186 你从哪里拿的测试返回结果?
这里的代码表示非主进程,返回空的 {} |
my environment:
python3.6
pytorch 1.2.0
cuda 10.0.130
apex 0.1
GPU 2*2080TI
I train it with 2 2080ti gpu card on market1501 dataset with all default settings of sbs_R50-ibn.yml but i cannot reproduce the results
My highest results is as follows for highest top1(92.64%) and map(78.78%) respectively, which is far less then the model zone 95.7%(top1) and 89.3%(map):
##################################### top1 ################################################
[03/22 10:37:55 fastreid.utils.events]: eta: 0:00:27 epoch/iter: 59/11999 total_loss: 12.79 loss_cls: 12.79 loss_triplet: 9.157e-05 time: 0.2132 data_time: 0.0007 lr: 7.00e-07 max_mem: 9573M
[03/22 10:38:22 fastreid.utils.events]: eta: 0:00:00 epoch/iter: 59/12119 total_loss: 12.79 loss_cls: 12.79 loss_triplet: 7.518e-05 time: 0.2134 data_time: 0.0009 lr: 7.00e-07 max_mem: 9573M
[03/22 10:38:23 fastreid.engine.defaults]: Prepare testing set
[03/22 10:38:23 fastreid.data.datasets.bases]: => Loaded Market1501 in csv format:
subset # ids # images # cameras
|:---------|:--------|:-----------|:------------|
| query | 750 | 3368 | 6 |
| gallery | 751 | 15913 | 6 |
[03/22 10:38:23 fastreid.evaluation.evaluator]: Start inference on 19281 images
[03/22 10:38:30 fastreid.evaluation.evaluator]: Inference done 11/151. 0.1033 s / batch. ETA=0:00:14
[03/22 10:38:45 fastreid.evaluation.evaluator]: Total inference time: 0:00:15.542858 (0.106458 s / batch per device, on 2 devices)
[03/22 10:38:45 fastreid.evaluation.evaluator]: Total inference pure compute time: 0:00:15 (0.103480 s / batch per device, on 2 devices)
[03/22 10:40:17 fastreid.engine.defaults]: Evaluation results for Market1501 in csv format:
[03/22 10:40:17 fastreid.evaluation.testing]: Evaluation results in csv format:
Dataset Rank-1 Rank-5 Rank-10 mAP mINP metric
|:-----------|:---------|:---------|:----------|:------|:-------|:---------|
| Market1501 | 92.64 | 97.06 | 98.28 | 78.01 | 42.65 | 85.32 |
###########################################################################################
##################################### map ################################################
[03/22 10:27:15 fastreid.utils.events]: eta: 0:08:44 epoch/iter: 48/9799 total_loss: 14.32 loss_cls: 14.32 loss_triplet: 0.001028 time: 0.2104 data_time: 0.0009 lr: 1.04e-04 max_mem: 9573M
[03/22 10:27:38 fastreid.utils.events]: eta: 0:08:22 epoch/iter: 48/9897 total_loss: 14.46 loss_cls: 14.45 loss_triplet: 0.0009101 time: 0.2105 data_time: 0.0006 lr: 1.04e-04 max_mem: 9573M
[03/22 10:28:01 fastreid.utils.events]: eta: 0:07:59 epoch/iter: 49/9999 total_loss: 14.38 loss_cls: 14.38 loss_triplet: 0.001046 time: 0.2107 data_time: 0.0009 lr: 8.80e-05 max_mem: 9573M
[03/22 10:28:24 fastreid.engine.defaults]: Prepare testing set
[03/22 10:28:24 fastreid.data.datasets.bases]: => Loaded Market1501 in csv format:
subset # ids # images # cameras
|:---------|:--------|:-----------|:------------|
| query | 750 | 3368 | 6 |
| gallery | 751 | 15913 | 6 |
[03/22 10:28:24 fastreid.evaluation.evaluator]: Start inference on 19281 images
[03/22 10:28:32 fastreid.evaluation.evaluator]: Inference done 11/151. 0.1015 s / batch. ETA=0:00:14
[03/22 10:28:47 fastreid.evaluation.evaluator]: Total inference time: 0:00:15.644438 (0.107154 s / batch per device, on 2 devices)
[03/22 10:28:47 fastreid.evaluation.evaluator]: Total inference pure compute time: 0:00:15 (0.104161 s / batch per device, on 2 devices)
[03/22 10:30:45 fastreid.engine.defaults]: Evaluation results for Market1501 in csv format:
[03/22 10:30:45 fastreid.evaluation.testing]: Evaluation results in csv format:
Dataset Rank-1 Rank-5 Rank-10 mAP mINP metric
|:-----------|:---------|:---------|:----------|:------|:-------|:---------|
| Market1501 | 92.49 | 97.39 | 98.25 | 78.78 | 44.38 | 85.64 |
###########################################################################################
The text was updated successfully, but these errors were encountered: