Skip to content

Latest commit

 

History

History
143 lines (115 loc) · 3.83 KB

README.md

File metadata and controls

143 lines (115 loc) · 3.83 KB

Travis build status Codecov test coverage CRAN status

tidycode

The goal of tidycode is to allow users to analyze R expressions in a tidy way.

Installation

You can install tidycode from CRAN with:

install.packages("tidycode")

You can install the development version of tidycode from github with:

# install.packages("remotes")
remotes::install_github("LucyMcGowan/tidycode")

Example

Read in existing code

Using the matahari package, we can read in existing code, either as a string or a file, and turn it into a matahari tibble using matahari::dance_recital().

code <- "
library(broom)
library(glue)
m <- lm(mpg ~ am, data = mtcars)
t <- tidy(m)
glue_data(t, 'The point estimate for term {term} is {estimate}.')
"

m <- matahari::dance_recital(code)

Alternatively, you may already have a matahari tibble that was recorded during an R session.

Load the tidycode library.

library(tidycode)

We can use the expressions from this matahari tibble to extract the names of the packages included. We can also create a data frame that will include all functions of the packages included.

(pkg_names <- ls_packages(m$expr))
#> [1] "broom" "glue"
pkg_functions <- get_package_functions(m$expr)

Create a data frame of your expressions, splitting each into individual functions.

u <- unnest_calls(m, expr)

Merge in the package names

u <- u %>%
  dplyr::left_join(pkg_functions) %>%
  dplyr::select(func, args, line, package)
#> Joining, by = "func"
u
#> # A tibble: 8 x 4
#>   func      args              line package
#>   <chr>     <list>           <int> <chr>  
#> 1 library   <list [1]>           1 base   
#> 2 library   <list [1]>           2 base   
#> 3 <-        <list [2]>           3 base   
#> 4 lm        <named list [2]>     3 stats  
#> 5 ~         <list [2]>           3 base   
#> 6 <-        <list [2]>           4 base   
#> 7 tidy      <list [1]>           4 broom  
#> 8 glue_data <list [2]>           5 glue

Add in the function classifications!

u %>%
  dplyr::inner_join(
    get_classifications("crowdsource", include_duplicates = FALSE)
    )
#> Joining, by = "func"
#> # A tibble: 8 x 5
#>   func      args              line package classification
#>   <chr>     <list>           <int> <chr>   <chr>         
#> 1 library   <list [1]>           1 base    setup         
#> 2 library   <list [1]>           2 base    setup         
#> 3 <-        <list [2]>           3 base    data cleaning 
#> 4 lm        <named list [2]>     3 stats   modeling      
#> 5 ~         <list [2]>           3 base    modeling      
#> 6 <-        <list [2]>           4 base    data cleaning 
#> 7 tidy      <list [1]>           4 broom   modeling      
#> 8 glue_data <list [2]>           5 glue    communication

We can also remove a list of “stopwords”. We have a function, get_stopfuncs() that lists common “stopwords”, frequently used operators, like %>% and +.

u %>%
  dplyr::inner_join(
    get_classifications("crowdsource", include_duplicates = FALSE)
    ) %>%
  dplyr::anti_join(get_stopfuncs()) %>%
  dplyr::select(func, classification)
#> Joining, by = "func"
#> Joining, by = "func"
#> # A tibble: 5 x 2
#>   func      classification
#>   <chr>     <chr>         
#> 1 library   setup         
#> 2 library   setup         
#> 3 lm        modeling      
#> 4 tidy      modeling      
#> 5 glue_data communication