-
Notifications
You must be signed in to change notification settings - Fork 1
/
solver.py
318 lines (258 loc) · 11.7 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
"""
StarGAN v2
Copyright (c) 2020-present NAVER Corp.
This work is licensed under the Creative Commons Attribution-NonCommercial
4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""
import os
from os.path import join as ospj
import time
import datetime
from munch import Munch
import torch
import torch.nn as nn
import torch.nn.functional as F
from core.model import build_model
from core.checkpoint import CheckpointIO
from core.data_loader import InputFetcher
import core.utils as utils
from metrics.eval import calculate_metrics
class Solver(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.nets, self.nets_ema = build_model(args)
# below setattrs are to make networks be children of Solver, e.g., for self.to(self.device)
for name, module in self.nets.items():
utils.print_network(module, name)
setattr(self, name, module)
for name, module in self.nets_ema.items():
setattr(self, name + '_ema', module)
if args.mode == 'train':
self.optims = Munch()
for net in self.nets.keys():
if net == 'fan':
continue
self.optims[net] = torch.optim.Adam(
params=self.nets[net].parameters(),
lr=args.f_lr if net == 'mapping_network' else args.lr,
betas=[args.beta1, args.beta2],
weight_decay=args.weight_decay)
self.ckptios = [
CheckpointIO(ospj(args.checkpoint_dir, '{:06d}_nets.ckpt'), data_parallel=True, **self.nets),
CheckpointIO(ospj(args.checkpoint_dir, '{:06d}_nets_ema.ckpt'), data_parallel=True, **self.nets_ema),
CheckpointIO(ospj(args.checkpoint_dir, '{:06d}_optims.ckpt'), **self.optims)]
else:
self.ckptios = [CheckpointIO(ospj(args.checkpoint_dir, '{:06d}_nets_ema.ckpt'), data_parallel=True, **self.nets_ema)]
self.to(self.device)
for name, network in self.named_children():
# Do not initialize the FAN parameters
if ('ema' not in name) and ('fan' not in name):
print('Initializing %s...' % name)
network.apply(utils.he_init)
def _save_checkpoint(self, step):
for ckptio in self.ckptios:
ckptio.save(step)
def _load_checkpoint(self, step):
for ckptio in self.ckptios:
ckptio.load(step)
def _reset_grad(self):
for optim in self.optims.values():
optim.zero_grad()
def train(self, loaders):
args = self.args
nets = self.nets
nets_ema = self.nets_ema
optims = self.optims
# fetch random validation images for debugging
fetcher = InputFetcher(loaders.src, loaders.ref, args.latent_dim, 'train')
fetcher_val = InputFetcher(loaders.val, None, args.latent_dim, 'val')
inputs_val = next(fetcher_val)
# resume training if necessary
if args.resume_iter > 0:
self._load_checkpoint(args.resume_iter)
# remember the initial value of ds weight
initial_lambda_ds = args.lambda_ds
print('Start training...')
start_time = time.time()
for i in range(args.resume_iter, args.total_iters):
# fetch images and labels
inputs = next(fetcher)
x_real, y_org = inputs.x_src, inputs.y_src
x_ref, x_ref2, y_trg = inputs.x_ref, inputs.x_ref2, inputs.y_ref
z_trg, z_trg2 = inputs.z_trg, inputs.z_trg2
masks = nets.fan.get_heatmap(x_real) if args.w_hpf > 0 else None
##Unfreeze Layers
unfreeze_discriminator_layers(nets.discriminator)
# train the discriminator
d_loss, d_losses_latent = compute_d_loss(
nets, args, x_real, y_org, y_trg, z_trg=z_trg, masks=masks)
self._reset_grad()
d_loss.backward()
optims.discriminator.step()
d_loss, d_losses_ref = compute_d_loss(
nets, args, x_real, y_org, y_trg, x_ref=x_ref, masks=masks)
self._reset_grad()
d_loss.backward()
optims.discriminator.step()
##Freeze Layers
freeze_discriminator_layers(nets.discriminator)
# train the generator
g_loss, g_losses_latent = compute_g_loss(
nets, args, x_real, y_org, y_trg, z_trgs=[z_trg, z_trg2], masks=masks)
self._reset_grad()
g_loss.backward()
optims.generator.step()
optims.mapping_network.step()
optims.style_encoder.step()
g_loss, g_losses_ref = compute_g_loss(
nets, args, x_real, y_org, y_trg, x_refs=[x_ref, x_ref2], masks=masks)
self._reset_grad()
g_loss.backward()
optims.generator.step()
# compute moving average of network parameters
moving_average(nets.generator, nets_ema.generator, beta=0.999)
moving_average(nets.mapping_network, nets_ema.mapping_network, beta=0.999)
moving_average(nets.style_encoder, nets_ema.style_encoder, beta=0.999)
# decay weight for diversity sensitive loss
if args.lambda_ds > 0:
args.lambda_ds -= (initial_lambda_ds / args.ds_iter)
# print out log info
if (i+1) % args.print_every == 0:
elapsed = time.time() - start_time
elapsed = str(datetime.timedelta(seconds=elapsed))[:-7]
log = "Elapsed time [%s], Iteration [%i/%i], " % (elapsed, i+1, args.total_iters)
all_losses = dict()
for loss, prefix in zip([d_losses_latent, d_losses_ref, g_losses_latent, g_losses_ref],
['D/latent_', 'D/ref_', 'G/latent_', 'G/ref_']):
for key, value in loss.items():
all_losses[prefix + key] = value
all_losses['G/lambda_ds'] = args.lambda_ds
log += ' '.join(['%s: [%.4f]' % (key, value) for key, value in all_losses.items()])
print(log)
# generate images for debugging
if (i+1) % args.sample_every == 0:
os.makedirs(args.sample_dir, exist_ok=True)
utils.debug_image(nets_ema, args, inputs=inputs_val, step=i+1)
# save model checkpoints
if (i+1) % args.save_every == 0:
self._save_checkpoint(step=i+1)
# compute FID and LPIPS if necessary
if (i+1) % args.eval_every == 0:
calculate_metrics(nets_ema, args, i+1, mode='latent')
calculate_metrics(nets_ema, args, i+1, mode='reference')
@torch.no_grad()
def sample(self, loaders):
args = self.args
nets_ema = self.nets_ema
os.makedirs(args.result_dir, exist_ok=True)
self._load_checkpoint(args.resume_iter)
src = next(InputFetcher(loaders.src, None, args.latent_dim, 'test'))
ref = next(InputFetcher(loaders.ref, None, args.latent_dim, 'test'))
fname = ospj(args.result_dir, 'reference.jpg')
print('Working on {}...'.format(fname))
utils.translate_using_reference(nets_ema, args, src.x, ref.x, ref.y, fname)
fname = ospj(args.result_dir, 'video_ref.mp4')
print('Working on {}...'.format(fname))
utils.video_ref(nets_ema, args, src.x, ref.x, ref.y, fname)
@torch.no_grad()
def evaluate(self):
args = self.args
nets_ema = self.nets_ema
resume_iter = args.resume_iter
self._load_checkpoint(args.resume_iter)
calculate_metrics(nets_ema, args, step=resume_iter, mode='latent')
calculate_metrics(nets_ema, args, step=resume_iter, mode='reference')
def compute_d_loss(nets, args, x_real, y_org, y_trg, z_trg=None, x_ref=None, masks=None):
assert (z_trg is None) != (x_ref is None)
# with real images
x_real.requires_grad_()
out = nets.discriminator(x_real, y_org)
loss_real = adv_loss(out, 1)
loss_reg = r1_reg(out, x_real)
# with fake images
with torch.no_grad():
if z_trg is not None:
s_trg = nets.mapping_network(z_trg, y_trg)
else: # x_ref is not None
s_trg = nets.style_encoder(x_ref, y_trg)
x_fake = nets.generator(x_real, s_trg, masks=masks)
out = nets.discriminator(x_fake, y_trg)
loss_fake = adv_loss(out, 0)
loss = loss_real + loss_fake + args.lambda_reg * loss_reg
return loss, Munch(real=loss_real.item(),
fake=loss_fake.item(),
reg=loss_reg.item())
def compute_g_loss(nets, args, x_real, y_org, y_trg, z_trgs=None, x_refs=None, masks=None):
assert (z_trgs is None) != (x_refs is None)
if z_trgs is not None:
z_trg, z_trg2 = z_trgs
if x_refs is not None:
x_ref, x_ref2 = x_refs
# adversarial loss
if z_trgs is not None:
s_trg = nets.mapping_network(z_trg, y_trg)
else:
s_trg = nets.style_encoder(x_ref, y_trg)
x_fake = nets.generator(x_real, s_trg, masks=masks)
out = nets.discriminator(x_fake, y_trg)
loss_adv = adv_loss(out, 1)
# style reconstruction loss
s_pred = nets.style_encoder(x_fake, y_trg)
loss_sty = torch.mean(torch.abs(s_pred - s_trg))
# diversity sensitive loss
if z_trgs is not None:
s_trg2 = nets.mapping_network(z_trg2, y_trg)
else:
s_trg2 = nets.style_encoder(x_ref2, y_trg)
x_fake2 = nets.generator(x_real, s_trg2, masks=masks)
x_fake2 = x_fake2.detach()
loss_ds = torch.mean(torch.abs(x_fake - x_fake2))
# cycle-consistency loss
masks = nets.fan.get_heatmap(x_fake) if args.w_hpf > 0 else None
s_org = nets.style_encoder(x_real, y_org)
x_rec = nets.generator(x_fake, s_org, masks=masks)
loss_cyc = torch.mean(torch.abs(x_rec - x_real))
loss = loss_adv + args.lambda_sty * loss_sty \
- args.lambda_ds * loss_ds + args.lambda_cyc * loss_cyc
return loss, Munch(adv=loss_adv.item(),
sty=loss_sty.item(),
ds=loss_ds.item(),
cyc=loss_cyc.item())
def moving_average(model, model_test, beta=0.999):
for param, param_test in zip(model.parameters(), model_test.parameters()):
param_test.data = torch.lerp(param.data, param_test.data, beta)
def adv_loss(logits, target):
assert target in [1, 0]
targets = torch.full_like(logits, fill_value=target)
loss = F.binary_cross_entropy_with_logits(logits, targets)
return loss
def r1_reg(d_out, x_in):
# zero-centered gradient penalty for real images
batch_size = x_in.size(0)
grad_dout = torch.autograd.grad(
outputs=d_out.sum(), inputs=x_in,
create_graph=True, retain_graph=True, only_inputs=True
)[0]
grad_dout2 = grad_dout.pow(2)
assert(grad_dout2.size() == x_in.size())
reg = 0.5 * grad_dout2.view(batch_size, -1).sum(1).mean(0)
return reg
def freeze_discriminator_layers(d):
'''
Function that freezes the first four discriminator layers.
'''
# Naming patterns taken from official code repo
ls = ['progression.{}'.format(8 - i) for i in range(3)] + ['linear']
for name, p in d.named_parameters():
if any(l in name for l in ls):
p.requires_grad = False
def unfreeze_discriminator_layers(d):
'''
Function that unfreezes the discriminator layers.
'''
for p in d.parameters():
p.requires_grad = True