-
Notifications
You must be signed in to change notification settings - Fork 192
/
maximumLikelihood.r
234 lines (200 loc) · 5.4 KB
/
maximumLikelihood.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# maximumLikelihood.r
#
# created: July 19, 2012
# revision history
options(digits=4, width=70)
library(maxLik)
#
# Bernoulli example
#
# Bernoulli likelihood
# x = 0, 1
# f(x,theta) = (theta^x)*(1-theta)^(1-x)
likelihood.Bernoulli = function(theta, x) {
# theta success probability parameter
# x vector of data
n = length(x)
ans = theta^sum(x) * (1-theta)^(n-sum(x))
return(ans)
}
# plot Bernoulli likelihood
x = rep(0,5)
theta.vals = seq(0,1, length.out=10)
like.vals = likelihood.Bernoulli(theta.vals, x)
plot(theta.vals, like.vals, type="b", col="blue", lwd=2,
main="Bernoulli Likelihood for x=(0,0,0,0,0)")
x = rep(1,5)
like.vals = likelihood.Bernoulli(theta.vals, x)
plot(theta.vals, like.vals, type="b", col="blue", lwd=2,
main="Bernoulli Likelihood for x=(1,1,1,1,1)")
#
# normal likelihood
#
likelihood.normal = function(theta, x) {
# theta vector of normal distribution parameters
# theta = (mu, sig2)'
# x vector of data
mu = theta[1]
sig2 = theta[2]
n = length(x)
a1 = (2*pi*sig2)^-(n/2)
a2 = -1/(2*sig2)
y = (x-mu)^2
ans = a1*exp(a2*sum(y))
return(ans)
}
likelihood.normal.mu = function(mu, sig2=1, x) {
# mu mean of normal distribution for given sig
# x vector of data
n = length(x)
a1 = (2*pi*sig2)^-(n/2)
a2 = -1/(2*sig2)
y = (x-mu)^2
ans = a1*exp(a2*sum(y))
return(ans)
}
# generate N(0,1) data
n = 50
set.seed(123)
x = rnorm(n, mean=0, sd=1)
# compute normal likelihood as function of mu
mu.vals = seq(-1,1, length.out=100)
like.vals = rep(0,length(mu.vals))
for (i in 1:length(like.vals)) {
like.vals[i] = likelihood.normal.mu(mu.vals[i], sig2=1, x=x)
}
plot(mu.vals, like.vals, type="l", col="blue", lwd=2)
abline(v=0, col="red", lwd=2)
mean(x)
#
# log-likelihood functions
#
# Bernoulli log-likelihood
# x = 0, 1
# f(x,theta) = (theta^x)*(1-theta)^(1-x)
loglike.Bernoulli = function(theta, x) {
# theta success probability parameter
# x vector of data
n = length(x)
ans = log(theta)*sum(x)+log(1-theta)*(n-sum(x))
return(ans)
}
# plot Bernoulli log-likelihood
par(mfrow=c(1,2))
x1 = rep(0,5)
theta.vals = seq(0.1,0.99, length.out=10)
loglike.vals = loglike.Bernoulli(theta.vals, x1)
plot(theta.vals, loglike.vals, type="b", col="blue", lwd=2,
main="Bernoulli log-likelihood for x=(0,0,0,0,0)")
x2 = rep(1,5)
like.vals = likelihood.Bernoulli(theta.vals, x2)
plot(theta.vals, like.vals, type="b", col="blue", lwd=2,
main="Bernoulli Likelihood for x=(1,1,1,1,1)")
par(mfrow=c(1,1))
# normal log-likelihood
loglike.normal.mu = function(mu, sig2=1, x) {
# mu mean of normal distribution for given sig
# x vector of data
n = length(x)
a1 = -(n/2)*log(2*pi)-(n/2)*log(sig2)
a2 = -1/(2*sig2)
y = (x-mu)^2
ans = a1+a2*sum(y)
return(ans)
}
# generate N(0,1) data
n = 50
set.seed(123)
x = rnorm(n, mean=0, sd=1)
# compute normal likelihood as function of mu
mu.vals = seq(-1,1, length.out=100)
loglike.vals = rep(0,length(mu.vals))
for (i in 1:length(loglike.vals)) {
loglike.vals[i] = loglike.normal.mu(mu.vals[i], sig2=1, x=x)
}
plot(mu.vals, loglike.vals, type="l", col="blue", lwd=2)
abline(v=0, col="red", lwd=2)
#
# Optimization in R
#
# optimize() function
test.fun = function(x) {
return(x^2)
}
ans = optimize(test.fun, lower=-1, upper=1, maximum=FALSE)
class(ans)
names(ans)
ans
x.vals = seq(-1,1,length.out=100)
plot(x.vals, test.fun(x.vals), type="l", col="blue",
xlab="x", ylab="f(x)", main="f(x)=x^2")
# use optim() to minimize functions of multiple variables
test.fun = function(theta) {
ans = theta[1]^2 + theta[2]^2
return(ans)
}
# set starting values for optimizer
theta.start = c(1,1)
ans = optim(par=theta.start, fn=test.fun,
method="BFGS")
class(ans)
names(ans)
ans
# maximize normal log-likelihood using optim
# by minimizing -1*log-likelihood
loglike.normal = function(theta, x) {
# theta parameters c(mu,sig2)
# x vector of data
mu = theta[1]
sig2 = theta[2]
n = length(x)
a1 = -(n/2)*log(2*pi)-(n/2)*log(sig2)
a2 = -1/(2*sig2)
y = (x-mu)^2
ans = a1+a2*sum(y)
# return -1 * loglike
return(-ans)
}
# generate N(0,1) data
n = 50
set.seed(123)
x = rnorm(n, mean=0, sd=1)
# set starting values for optimizer
theta.start = c(0,1)
ans = optim(par=theta.start, fn=loglike.normal, x=x,
method="BFGS")
ans$par
# verify mle is mean and scaled variance
mean(x)
var(x)*(n-1)/n
# compute MLE and get standard errors
# set starting values for optimizer
ans = optim(par=theta.start, fn=loglike.normal, x=x,
method="BFGS", hessian=TRUE)
names(ans)
ans$hessian
se.mle = sqrt(diag(solve(ans$hessian)))
se.mle
# use maxLik function from maxLik package
# here function to compute log-likelihood returns log-likelihood values
# and not -1*log-likelihood values
library(maxLik)
loglike.normal = function(theta, x) {
# theta parameters c(mu,sig2)
# x vector of data
mu = theta[1]
sig2 = theta[2]
n = length(x)
a1 = -(n/2)*log(2*pi)-(n/2)*log(sig2)
a2 = -1/(2*sig2)
y = (x-mu)^2
ans = a1+a2*sum(y)
return(ans)
}
theta.start = c(0,1)
names(theta.start) = c("mu","sig2")
theta.mle = maxLik(loglike.normal, start=theta.start, x=x)
class(theta.mle)
names(theta.mle)
theta.mle
summary(theta.mle)