forked from burakbayramli/books
-
Notifications
You must be signed in to change notification settings - Fork 0
/
EdgeWeightedDirectedCycle.java
185 lines (162 loc) · 6.13 KB
/
EdgeWeightedDirectedCycle.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*************************************************************************
* Compilation: javac EdgeWeightedDirectedCycle.java
* Execution: java EdgeWeightedDirectedCycle V E F
* Dependencies: EdgeWeightedDigraph.java DirectedEdge Stack.java
*
* Finds a directed cycle in an edge-weighted digraph.
* Runs in O(E + V) time.
*
*
*************************************************************************/
/**
* The <tt>EdgeWeightedDirectedCycle</tt> class represents a data type for
* determining whether an edge-weighted digraph has a directed cycle.
* The <em>hasCycle</em> operation determines whether the edge-weighted
* digraph has a directed cycle and, if so, the <em>cycle</em> operation
* returns one.
* <p>
* This implementation uses depth-first search.
* The constructor takes time proportional to <em>V</em> + <em>E</em>
* (in the worst case),
* where <em>V</em> is the number of vertices and <em>E</em> is the number of edges.
* Afterwards, the <em>hasCycle</em> operation takes constant time;
* the <em>cycle</em> operation takes time proportional
* to the length of the cycle.
* <p>
* See {@link Topological} to compute a topological order if the edge-weighted
* digraph is acyclic.
* <p>
* For additional documentation, see <a href="/algs4/44sp">Section 4.4</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class EdgeWeightedDirectedCycle {
private boolean[] marked; // marked[v] = has vertex v been marked?
private DirectedEdge[] edgeTo; // edgeTo[v] = previous edge on path to v
private boolean[] onStack; // onStack[v] = is vertex on the stack?
private Stack<DirectedEdge> cycle; // directed cycle (or null if no such cycle)
/**
* Determines whether the edge-weighted digraph <tt>G</tt> has a directed cycle and,
* if so, finds such a cycle.
* @param G the edge-weighted digraph
*/
public EdgeWeightedDirectedCycle(EdgeWeightedDigraph G) {
marked = new boolean[G.V()];
onStack = new boolean[G.V()];
edgeTo = new DirectedEdge[G.V()];
for (int v = 0; v < G.V(); v++)
if (!marked[v]) dfs(G, v);
// check that digraph has a cycle
assert check(G);
}
// check that algorithm computes either the topological order or finds a directed cycle
private void dfs(EdgeWeightedDigraph G, int v) {
onStack[v] = true;
marked[v] = true;
for (DirectedEdge e : G.adj(v)) {
int w = e.to();
// short circuit if directed cycle found
if (cycle != null) return;
//found new vertex, so recur
else if (!marked[w]) {
edgeTo[w] = e;
dfs(G, w);
}
// trace back directed cycle
else if (onStack[w]) {
cycle = new Stack<DirectedEdge>();
while (e.from() != w) {
cycle.push(e);
e = edgeTo[e.from()];
}
cycle.push(e);
}
}
onStack[v] = false;
}
/**
* Does the edge-weighted digraph have a directed cycle?
* @return <tt>true</tt> if the edge-weighted digraph has a directed cycle,
* <tt>false</tt> otherwise
*/
public boolean hasCycle() {
return cycle != null;
}
/**
* Returns a directed cycle if the edge-weighted digraph has a directed cycle,
* and <tt>null</tt> otherwise.
* @return a directed cycle (as an iterable) if the edge-weighted digraph
* has a directed cycle, and <tt>null</tt> otherwise
*/
public Iterable<DirectedEdge> cycle() {
return cycle;
}
// certify that digraph is either acyclic or has a directed cycle
private boolean check(EdgeWeightedDigraph G) {
// edge-weighted digraph is cyclic
if (hasCycle()) {
// verify cycle
DirectedEdge first = null, last = null;
for (DirectedEdge e : cycle()) {
if (first == null) first = e;
if (last != null) {
if (last.to() != e.from()) {
System.err.printf("cycle edges %s and %s not incident\n", last, e);
return false;
}
}
last = e;
}
if (last.to() != first.from()) {
System.err.printf("cycle edges %s and %s not incident\n", last, first);
return false;
}
}
return true;
}
/**
* Unit tests the <tt>EdgeWeightedDirectedCycle</tt> data type.
*/
public static void main(String[] args) {
// create random DAG with V vertices and E edges; then add F random edges
int V = Integer.parseInt(args[0]);
int E = Integer.parseInt(args[1]);
int F = Integer.parseInt(args[2]);
EdgeWeightedDigraph G = new EdgeWeightedDigraph(V);
int[] vertices = new int[V];
for (int i = 0; i < V; i++) vertices[i] = i;
StdRandom.shuffle(vertices);
for (int i = 0; i < E; i++) {
int v, w;
do {
v = StdRandom.uniform(V);
w = StdRandom.uniform(V);
} while (v >= w);
double weight = Math.random();
G.addEdge(new DirectedEdge(v, w, weight));
}
// add F extra edges
for (int i = 0; i < F; i++) {
int v = (int) (Math.random() * V);
int w = (int) (Math.random() * V);
double weight = Math.random();
G.addEdge(new DirectedEdge(v, w, weight));
}
StdOut.println(G);
// find a directed cycle
EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(G);
if (finder.hasCycle()) {
StdOut.print("Cycle: ");
for (DirectedEdge e : finder.cycle()) {
StdOut.print(e + " ");
}
StdOut.println();
}
// or give topologial sort
else {
StdOut.println("No directed cycle");
}
}
}