forked from burakbayramli/books
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GabowSCC.java
176 lines (157 loc) · 5.53 KB
/
GabowSCC.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*************************************************************************
* Compilation: javac GabowSCC.java
* Execution: java GabowSCC V E
* Dependencies: Digraph.java Stack.java TransitiveClosure.java StdOut.java
*
* Compute the strongly-connected components of a digraph using
* Gabow's algorithm (aka Cheriyan-Mehlhorn algorithm).
*
* Runs in O(E + V) time.
*
* % java GabowSCC tinyDG.txt
* 5 components
* 1
* 0 2 3 4 5
* 9 10 11 12
* 6 8
* 7
*
*************************************************************************/
/**
* The <tt>GabowSCC</tt> class represents a data type for
* determining the strong components in a digraph.
* The <em>id</em> operation determines in which strong component
* a given vertex lies; the <em>areStronglyConnected</em> operation
* determines whether two vertices are in the same strong component;
* and the <em>count</em> operation determines the number of strong
* components.
* The <em>component identifier</em> of a component is one of the
* vertices in the strong component: two vertices have the same component
* identifier if and only if they are in the same strong component.
* <p>
* This implementation uses the Gabow's algorithm.
* The constructor takes time proportional to <em>V</em> + <em>E</em>
* (in the worst case),
* where <em>V</em> is the number of vertices and <em>E</em> is the number of edges.
* Afterwards, the <em>id</em>, <em>count</em>, and <em>areStronglyConnected</em>
* operations take constant time.
* For alternate implementations of the same API, see
* {@link KosarajuSharirSCC} and {@link TarjanSCC}.
* <p>
* For additional documentation, see <a href="/algs4/42digraph">Section 4.2</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class GabowSCC {
private boolean[] marked; // marked[v] = has v been visited?
private int[] id; // id[v] = id of strong component containing v
private int[] preorder; // preorder[v] = preorder of v
private int pre; // preorder number counter
private int count; // number of strongly-connected components
private Stack<Integer> stack1;
private Stack<Integer> stack2;
/**
* Computes the strong components of the digraph <tt>G</tt>.
* @param G the digraph
*/
public GabowSCC(Digraph G) {
marked = new boolean[G.V()];
stack1 = new Stack<Integer>();
stack2 = new Stack<Integer>();
id = new int[G.V()];
preorder = new int[G.V()];
for (int v = 0; v < G.V(); v++) id[v] = -1;
for (int v = 0; v < G.V(); v++) {
if (!marked[v]) dfs(G, v);
}
// check that id[] gives strong components
assert check(G);
}
private void dfs(Digraph G, int v) {
marked[v] = true;
preorder[v] = pre++;
stack1.push(v);
stack2.push(v);
for (int w : G.adj(v)) {
if (!marked[w]) dfs(G, w);
else if (id[w] == -1) {
while (preorder[stack2.peek()] > preorder[w])
stack2.pop();
}
}
// found strong component containing v
if (stack2.peek() == v) {
stack2.pop();
int w;
do {
w = stack1.pop();
id[w] = count;
} while (w != v);
count++;
}
}
/**
* Returns the number of strong components.
* @return the number of strong components
*/
public int count() {
return count;
}
/**
* Are vertices <tt>v</tt> and <tt>w</tt> in the same strong component?
* @param v one vertex
* @param w the other vertex
* @return <tt>true</tt> if vertices <tt>v</tt> and <tt>w</tt> are in the same
* strong component, and <tt>false</tt> otherwise
*/
public boolean stronglyConnected(int v, int w) {
return id[v] == id[w];
}
/**
* Returns the component id of the strong component containing vertex <tt>v</tt>.
* @param v the vertex
* @return the component id of the strong component containing vertex <tt>v</tt>
*/
public int id(int v) {
return id[v];
}
// does the id[] array contain the strongly connected components?
private boolean check(Digraph G) {
TransitiveClosure tc = new TransitiveClosure(G);
for (int v = 0; v < G.V(); v++) {
for (int w = 0; w < G.V(); w++) {
if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v)))
return false;
}
}
return true;
}
/**
* Unit tests the <tt>GabowSCC</tt> data type.
*/
public static void main(String[] args) {
In in = new In(args[0]);
Digraph G = new Digraph(in);
GabowSCC scc = new GabowSCC(G);
// number of connected components
int M = scc.count();
StdOut.println(M + " components");
// compute list of vertices in each strong component
Queue<Integer>[] components = (Queue<Integer>[]) new Queue[M];
for (int i = 0; i < M; i++) {
components[i] = new Queue<Integer>();
}
for (int v = 0; v < G.V(); v++) {
components[scc.id(v)].enqueue(v);
}
// print results
for (int i = 0; i < M; i++) {
for (int v : components[i]) {
StdOut.print(v + " ");
}
StdOut.println();
}
}
}