forked from burakbayramli/books
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CatFriction.py
50 lines (42 loc) · 1.79 KB
/
CatFriction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
""" From "COMPUTATIONAL PHYSICS" & "COMPUTER PROBLEMS in PHYSICS"
by RH Landau, MJ Paez, and CC Bordeianu (deceased)
Copyright R Landau, Oregon State Unv, MJ Paez, Univ Antioquia,
C Bordeianu, Univ Bucharest, 2017.
Please respect copyright & acknowledge our work."""
# CatFriction.py: Solve for wave on catenary with friction
from numpy import *
dt = 0.0001; dx = 0.01; T = 1; rho = 0.1
maxtime = 100; kappa = 30; D = T/(rho*9.8)
x = zeros((512,3),float)
q = open('CatFriction.dat','w'); rr = open('CatFunct.dat','w+t')
for i in range (0,101): x[i][0] = -0.08*sin(pi*i*dx) # IC
for i in range(1,100): # First step
x[i][1] = ( dt*(T/rho)*(( x[i+1][0]-x[i][0] )
/dx*( exp((i-50)*dx/D)
-exp(-(i-50)*dx/D))/D +(exp((i-50)*dx/D)
+exp(-(i-50)*dx/D))* ( x[i+1][0]+x[i-1][0]
-2.0*x[i][0] )/(pow(dx,2)) )
-2*kappa*x[i][0]+2*x[i][0]/dt )/(2*kappa+(2/dt))
for k in range (0,300): # Other steps
for i in range(1,100):
x[i][2] = (dt*(T/rho)*((x[i+1][1]-x[i][1])
/dx*(exp((i-50)*dx/D) -exp(-(i-50)*dx/D))/D
+(exp((i-50)*dx/D)+exp(-(i-50)*dx/D)) *
(x[i+1][1]+x[i-1][1]-2.0*x[i][1])/(pow(dx,2)))
-2*kappa*x[i][1]-(-2*x[i][1]+x[i][0])/dt)/(2*kappa+(1/dt))
for i in range(1,101):
x[i][0] = x[i][1]
x[i][1] = x[i][2]
if (k%4==0 or k==0):
for i in range(0,100):
a1=exp((i-50.)*dx/D)
a2=exp(-(i-50.)*dx/D)
rr.write("%7.3f"%(D*(a1+a2)))
rr.write("\n")
q.write('%7.3f'%(x[i,2]))
q.write("\n")
q.write("\n");
rr.write("\n");
rr.closed
q.closed
print("Data stored in CatFrict.dat and CatFunct.dat")