-
Notifications
You must be signed in to change notification settings - Fork 3
/
AnnotatedPair.v
39 lines (36 loc) · 1002 Bytes
/
AnnotatedPair.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Require Export SystemFR.Judgments.
Require Export SystemFR.AnnotatedTactics.
Require Export SystemFR.ErasedPair.
Lemma annotated_reducible_pp:
forall Θ Γ A B t1 t2,
wf B 1 ->
is_annotated_type B ->
is_annotated_term t1 ->
subset (fv B) (support Γ) ->
[[ Θ; Γ ⊨ t1 : A ]] ->
[[ Θ; Γ ⊨ t2 : open 0 B t1 ]] ->
[[ Θ; Γ ⊨ pp t1 t2 : T_prod A B ]].
Proof.
intros; apply open_reducible_pp; repeat step || erase_open; side_conditions.
Qed.
Lemma annotated_reducible_pi1:
forall Θ Γ t A B,
[[ Θ; Γ ⊨ t : T_prod A B ]] ->
[[ Θ; Γ ⊨ pi1 t : A ]].
Proof.
steps; eauto using open_reducible_pi1.
Qed.
Lemma annotated_reducible_pi2:
forall Θ Γ t A B,
wf B 1 ->
is_annotated_type B ->
is_annotated_term t ->
subset (fv B) (support Γ) ->
[[ Θ; Γ ⊨ t : T_prod A B ]] ->
[[ Θ; Γ ⊨ pi2 t : open 0 B (pi1 t) ]].
Proof.
repeat step || erase_open.
eapply open_reducible_pi2;
steps;
side_conditions.
Qed.