-
Notifications
You must be signed in to change notification settings - Fork 1
/
index.html
225 lines (190 loc) · 6.41 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
layout: deck
---
{% assign deck = site.data.deck %}
$${% include tex-header.tex %}$$
{% slide : Outline %}
<ol class="half center">
<li>Dichalcogenides overview</li>
<li>Induced superconducting phase</li>
<li>Optical transitions</li>
<li>Superconducting optical excitations</li>
</ol>
<div class="lattice-image two-thirds center"></div>
{% endslide %}
{% slide : Effective Hamiltonian %}
<div class="lattice-image half"></div>
<ul class="half omega">
<li>\( \mathrm{MoS_2} \), \( \mathrm{WS_2} \), \( \mathrm{MoSe_2} \), \( \mathrm{WSe_2} \)</li>
<li>Similar to monolayer graphene:
two inequivalent valleys: \( \vect{K} \), \( \vect{K}' \)</li>
<li>Strong <strong>spin-orbit coupling</strong>
and <strong>inversion symmetry breaking</strong></li>
<li>Leads to opposite valley Berry curvature</li>
<li>Tight binding model: \( d_{z^2}, d_{xy}, d_{x^2 - y^2} \)</li>
</ul>
{% slide div %}
<p class="full center">
$$
H_0^{τ σ} \exOfK =
a t \left(τ k_x σ_x + k_y σ_y \right) ⊗ I_2
+ \frac{Δ}{2} σ_z ⊗ I_2
- λ τ \left(σ_z - 1 \right) ⊗ S_z
$$
</p>
<p class="small full center">
$$
H_0^{τ σ} \exOfK =
\left[
\begin{matrix}
\dfrac{Δ}{2} & a t \left( τ k_x - i k_y \right) \\
a t \left( τ k_x + i k_y \right) & λ τ σ - \dfrac{Δ}{2}
\end{matrix}
\right]
$$
</p>
<p class="small full">{% reference PhysRevLett.108.196802 %}</p>
{% endslide %}
{% endslide %}
{% slide : Energy Bands %}
<figure class="two-thirds">
{% image bands.svg %}
<figcaption>The eight energy bands for \( \mathrm{MoS_2} \).</figcaption>
</figure>
<div class="one-third omega">
<ul>
<li>\( Δ \)—band splitting</li>
<li>\( λ \)—spin splitting</li>
<li>\( τ \)—valley index</li>
<li>\( σ \)—spin index</li>
</ul>
<h3>\( \mathrm{MoS_2} \)</h3>
<ul>
<li>\( a t = 3.15 \: \text{Å eV} \)</li>
<li>\( Δ = 1.66 \: \text{eV} \)</li>
<li>\( 2 λ = 0.15 \: \text{eV} \)</li>
<li>\( μ = -0.83 \: \text{eV} \)</li>
</ul>
</div>
<p class="full omega">
$$
E_{τ σ}^n \exOfK =
\frac{1}{2} \left( λ τ σ
+ n \sqrt{ (2 a t)^2 \left\lvert \vect{k} \right\rvert^2
+ \left( Δ - λ τ σ \right)^2 } \right)
$$
</p>
{% endslide %}
{% slide : Induced Superconductivity %}
<h3>Intervalley pairing</h3>
<figure class="half">
{% image superconducting_states.svg %}
<figcaption>BCS pairs for induced superconducting states.</figcaption>
</figure>
<div class="half omega">
<ul class="full omega">
<li>\( a^ν_{τ σ} \)—orbital operators</li>
<li>\( b_α \)—quasiparticle operators</li>
<li>BCS pairs in opposite valleys</li>
<li>Reduces to standard BCS Hamiltonian
where \( α = τ = σ \) plays the role of the spin index</li>
<li>Not a singlet ground state: mixture of singlet and triplet states</li>
</ul>
<p class="small full center omega">
$$
\begin{equation}
H_V = -
\sideset{}{'}∑_{\vK} \sideset{}{}∑_{ν, τ} Δ_ν
{a^ν_{-τ ↓}}^† \exOfMK
{a^ν_{τ ↑}}^† \exOfK
+ \hc
\end{equation}
$$
</p>
<p class="small full center omega">
$$
\begin{equation}
H - μ N =
\sideset{}{'}∑_{\vK} \sideset{}{}∑_α λ_{\vK}^α b_{\vK α}^† b_{\vK α}
+ \sideset{}{'}∑_{\vK} \left(ξ_{\vK ↓} + λ_{\vK}^- \right) .
\end{equation}
$$
</p>
</div>
{% endslide %}
{% slide : Optical Transitions %}
<figure class="half">
{% image transitions.svg %}
<figcaption>Optical transition rates for \( H_0 \).</figcaption>
</figure>
<figure class="half omega">
{% image band_transitions.svg %}
<figcaption>Optical transitions strongly coupled to light polarization.</figcaption>
</figure>
<div class="half">
<p>
\( \vect{P}^{τ σ} \exOfK =
\frac{m_0}{ħ}
\left\langle u_+ \right\rvert ∇_{\vK} H_0^{τ σ} \exOfK
\left\lvert u_- \right\rangle \)
</p>
<p>
\( P_±^{τ σ} \exOfK = P_x^{τ σ} ± i P_y^{τ σ} \)
</p>
</div>
<ul class="half omega">
<li>Right circular polarization strongly couples to \( τ = + \) valley transitions</li>
<li>Left circular polarization strongly couples to \( τ = - \) valley transitions</li>
</ul>
<p class="small full">{% reference PhysRevLett.108.196802 %}</p>
{% endslide %}
{% slide : SC Optical Excitations %}
<figure class="half">
{% image excitations-1.svg %}
<figcaption>Induced superconducting optical transition rates for \( τ = + \).</figcaption>
</figure>
<figure class="half omega">
{% image excitations-2.svg %}
<figcaption>Induced superconducting optical transition rates for \( τ = - \).</figcaption>
</figure>
<div class="half">
<p>
\( \vect{P} \exOfK =
\frac{m_0}{ħ}
\left\langle Ω_f \right\rvert ∇_{\vK} H^{τ σ} \exOfK
\left\lvert Ω \right\rangle \)
</p>
<p>
\( P_± \exOfK = P_x ± i P_y \)
</p>
</div>
<div class="half omega">
<p>
\( \left\lvert Ω \right\rangle
= ∏_{\vK} b_{\vK ↑} b_{-\vK ↓} \left\lvert 0 \right\rangle \)
</p>
<p>
\( \left\lvert Ω_f \right\rangle =
\begin{cases}
{c^+_α}^† \exOfK b_{-α} \exOfMK \left\lvert Ω \right\rangle & k > k_μ \\
{c^+_α}^† \exOfK b_{-α}^† \exOfMK \left\lvert Ω \right\rangle & k < k_μ
\end{cases} \)
</p>
</div>
{% endslide %}
{% slide : SC Optical Excitations %}
<h3>Compare to normal transitions</h3>
<figure class="half">
{% image excitations-closeup-1.svg %}
<figcaption>Strong induced superconducting optical transition rates. Dashed lines are \( H_0 \) transitions.</figcaption>
</figure>
<figure class="half omega">
{% image excitations-closeup-2.svg %}
<figcaption>Weak induced superconducting optical transition rates. Dashed lines are \( H_0 \) transitions.</figcaption>
</figure>
<ul class="full">
<li>Upper band excitations are now paired with lower band quasiparticle excitations</li>
<li>Valley-polarization coupling is retained even in the superconducting case</li>
<li>Contrast is reduced in an region around the chemical potential</li>
</ul>
{% endslide %}