-
Notifications
You must be signed in to change notification settings - Fork 7
/
20130206-TauFAS.tex
724 lines (621 loc) · 29.7 KB
/
20130206-TauFAS.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
% \documentclass[handout]{beamer}
\documentclass{beamer}
\mode<presentation>
{
\usetheme{default}
\usefonttheme[onlymath]{serif}
% \usetheme{Singapore}
% \usetheme{Warsaw}
% \usetheme{Malmoe}
% \useinnertheme{circles}
% \useoutertheme{infolines}
% \useinnertheme{rounded}
\setbeamercovered{transparent=100}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
\usepackage{alltt,listings,multirow,ulem,siunitx}
\usepackage[absolute,overlay]{textpos}
\TPGrid{1}{1}
\usepackage{pdfpages}
\usepackage{multimedia}
\usepackage{multicol}
\newcommand\hmmax{0}
\newcommand\bmmax{0}
\usepackage{bm}
\usepackage{comment}
% font definitions, try \usepackage{ae} instead of the following
% three lines if you don't like this look
\usepackage{mathptmx}
\usepackage[scaled=.90]{helvet}
% \usepackage{courier}
\usepackage[T1]{fontenc}
\usepackage{tikz}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{shadows,arrows,shapes.misc,shapes.arrows,shapes.multipart,arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri,calc,shadows,chains,matrix}
% \usepackage{pgfpages}
% \pgfpagesuselayout{4 on 1}[a4paper,landscape,border shrink=5mm]
\usepackage{JedMacros}
\newcommand{\timeR}{t_{\mathrm{R}}}
\newcommand{\timeW}{t_{\mathrm{W}}}
\newcommand{\mglevel}{\ensuremath{\ell}}
\newcommand{\mglevelcp}{\ensuremath{\mglevel_{\mathrm{cp}}}}
\newcommand{\mglevelcoarse}{\ensuremath{\mglevel_{\mathrm{coarse}}}}
\newcommand{\mglevelfine}{\ensuremath{\mglevel_{\mathrm{fine}}}}
%solution and residual
\newcommand{\vx}{\ensuremath{x}}
\newcommand{\vc}{\ensuremath{\hat{x}}}
\newcommand{\vr}{\ensuremath{r}}
\newcommand{\vb}{\ensuremath{b}}
%operators
\newcommand{\vA}{\ensuremath{A}}
\newcommand{\vP}{\ensuremath{I_H^h}}
\newcommand{\vS}{\ensuremath{S}}
\newcommand{\vR}{\ensuremath{I_h^H}}
\newcommand{\vI}{\ensuremath{\hat I_h^H}}
\newcommand{\vV}{\ensuremath{\mathbf{V}}}
\newcommand{\vF}{\ensuremath{F}}
\newcommand{\vtau}{\ensuremath{\mathbf{\tau}}}
\title{Low-memory low-communication resilient multigrid}
\author{{\bf Jed Brown}\inst{1}, Mark Adams\inst{2}, Peter Brune\inst{1}, \\ Matt Knepley\inst{3}, and Barry Smith\inst{1}}
% - Use the \inst command only if there are several affiliations.
% - Keep it simple, no one is interested in your street address.
\institute
{
\inst{1}{Mathematics and Computer Science Division, Argonne National Laboratory} \\
\inst{2}{Columbia University} \\
\inst{3}{University of Chicago}
}
\date{UIUC, 2013-02-06}
% This is only inserted into the PDF information catalog. Can be left
% out.
\subject{Talks}
% If you have a file called "university-logo-filename.xxx", where xxx
% is a graphic format that can be processed by latex or pdflatex,
% resp., then you can add a logo as follows:
% \pgfdeclareimage[height=0.5cm]{university-logo}{university-logo-filename}
% \logo{\pgfuseimage{university-logo}}
% Delete this, if you do not want the table of contents to pop up at
% the beginning of each subsection:
% \AtBeginSubsection[]
% {
% \begin{frame}<beamer>
% \frametitle{Outline}
% \tableofcontents[currentsection,currentsubsection]
% \end{frame}
% }
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection]
\end{frame}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
% \beamerdefaultoverlayspecification{<+->}
\begin{document}
\lstset{language=C}
\normalem
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Motivation}
\begin{itemize}
\item Hardware is changing to favor extreme data locality
\item Bandwidth to/from accelerator devices is limited
\item Stiff PDE systems are globally coupled, but we would like a mechanism for local recovery
\item Disk IO is hopelessly slow, but some applications need checkpoints
\item Optimal algorithms are necessary
\end{itemize}
\end{frame}
\input{slides/HardwareRoadmap.tex}
\input{slides/HardwareArithmeticIntensity.tex}
\begin{frame}[fragile]{Multigrid Preliminaries}
\begin{figure}
\centering
\begin{tikzpicture}
[>=stealth,
every node/.style={inner sep=2pt},
restrict/.style={thick},
prolong/.style={thick},
mglevel/.style={rounded rectangle,draw=blue!50!black,fill=blue!20,thick,minimum size=4mm},
]
\begin{scope}\scriptsize
\newcommand\mgdx{4.0em}
\newcommand\mgdy{4.0em}
\newcommand\mgl[1]{(pow(2,#1+1))}
\newcommand\mgloc[4]{(#1 + #4*\mgdx*#3,#2 + \mgdy*#3)}
\newcommand\mghx{0.9*\mgdx}
\newcommand\mghy{0.9*\mgdy}
\draw[shift=\mgloc{0*\mgdx}{0}{0}{0},
xstep=\mghy/\mgl{3},
ystep=\mghy/\mgl{3}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\draw[shift=\mgloc{1*\mgdx}{0}{0}{0},
xstep=\mghy/\mgl{2},
ystep=\mghy/\mgl{2}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\draw[shift=\mgloc{2*\mgdx}{0}{0}{0},
xstep=\mghy/\mgl{1},
ystep=\mghy/\mgl{1}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\draw[shift=\mgloc{3*\mgdx}{0}{0}{0},
xstep=\mghy/\mgl{0},
ystep=\mghy/\mgl{0}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\end{scope}
\end{tikzpicture}
\label{fig:levels}
\end{figure}
\textbf{Multigrid} is an $O(n)$ method for solving algebraic problems by defining a hierarchy of scale.
A multigrid method is constructed from:
\begin{enumerate}
\item a series of discretizations
\begin{itemize}
\item coarser approximations of the original problem
\item constructed algebraically or geometrically
\end{itemize}
\item intergrid transfer operators
\begin{itemize}
\item residual restriction $I_h^H$ (fine to coarse)
\item state restriction $\hat I_h^H$ (fine to coarse)
\item partial state interpolation $I_H^h$ (coarse to fine, `prolongation')
\item state reconstruction $\mathbb{I}_H^h$ (coarse to fine)
\end{itemize}
\item Smoothers ($S$)
\begin{itemize}
\item correct the high frequency error components
\item Richardson, Jacobi, Gauss-Seidel, etc.
\item Gauss-Seidel-Newton or optimization methods
\end{itemize}
\end{enumerate}
\end{frame}
\begin{frame}[fragile]
\frametitle{Multigrid}
\begin{itemize}
\item \textbf{Multigrid} methods uses coarse correction for large-scale error
\end{itemize}
\begin{figure}
\centering
\begin{tikzpicture}
[>=stealth,
every node/.style={inner sep=2pt},
restrict/.style={thick},
prolong/.style={thick},
mglevel/.style={rounded rectangle,draw=blue!50!black,fill=blue!20,thick,minimum size=4mm},
]
\begin{scope}\scriptsize
\newcommand\mgdx{4.0em}
\newcommand\mgdy{3.0em}
\newcommand\mgl[1]{(pow(2,#1+1))}
\newcommand\mgloc[4]{(#1 + #4*\mgdx*#3,#2 + \mgdy*#3)}
\node[mglevel] (down0) at \mgloc{0}{0}{2}{-1} {\mglevel$_{fine}$};
\node[mglevel] (down1) at \mgloc{0}{0}{1}{-1} {};
\node[mglevel] (coarse) at \mgloc{0}{0}{0}{-1} {\mglevel$_{coarse}$};
\node[mglevel] (up1) at \mgloc{0}{0}{1}{1} {};
\node[mglevel] (up0) at \mgloc{0}{0}{2}{1} {\mglevel$_{fine}$};
\path[->,restrict] (down0) edge node [above right] {$\vR\vb$} (down1)
(down1) edge node [above right] {$\vR\vb$} (coarse);
\path[->,prolong] (coarse) edge node [above left] {$\vP\vc$} (up1)
(up1) edge node [above left] {$\vP\vc$} (up0);
%grids
\newcommand\mghx{0.9*\mgdx}
\newcommand\mghy{0.9*\mgdy}
\draw[shift=\mgloc{-5*\mgdx}{0}{2}{0},
xstep=\mghy/\mgl{2},
ystep=\mghy/\mgl{2}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\draw[shift=\mgloc{-5*\mgdx}{0}{1}{0},
xstep=\mghy/\mgl{1},
ystep=\mghy/\mgl{1}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\draw[shift=\mgloc{-5*\mgdx}{0}{0}{0},
xstep=\mghy/\mgl{0},
ystep=\mghy/\mgl{0}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\end{scope}
\end{tikzpicture}
\label{fig:MG}
\end{figure}
Algorithm $MG(\vA,\vb)$ for the solution of $\vA\vx = \vb$:
\begin{align*}
&\vx = \vS^m(\vx,\vb) & \text{pre-smooth}\\
&\vb^{H} = \vR(\vr - \vA\vx) & \text{restrict residual}\\
&\vc^{H} = MG(\vR\vA\vP,\vb^{H}) & \text{recurse}\\
&\vx = \vx + \vP\vc^{H} & \text{prolong correction}\\
&\vx = \vx + \vS^n(\vx,\vb) & \text{post-smooth}\\
\end{align*}
\end{frame}
\begin{comment}
1. Different schedules of level visit
2. Full Multigrid -- comes from adaptive mesh refinement
3. Highly efficient way of arriving at the fine solution
3. If you have an initial fine level and project right to coarse it's an F-cycle
\end{comment}
\begin{frame}[fragile]
\frametitle{Full Multigrid(FMG)}
\begin{figure}
\centering
\begin{tikzpicture}
[>=stealth,
every node/.style={inner sep=2pt},
restrict/.style={thick},
prolong/.style={thick},
mglevel/.style={rounded rectangle,draw=blue!50!black,fill=blue!20,thick,minimum size=4mm},
]
\begin{scope}\scriptsize
\newcommand\mgdx{3.0em}
\newcommand\mgdy{3.0em}
\newcommand\mgl[1]{(pow(2,#1+1))}
\newcommand\mgloc[4]{(#1 + #4*\mgdx*#3,#2 + \mgdy*#3)}
\node[mglevel] (coarseinit) at \mgloc{-3}{0}{0}{0} {$\mglevel_{coarse}$};
\node[mglevel] (afine) at \mgloc{0}{0}{1}{1} {};
\node[mglevel] (bcoarse) at \mgloc{2*\mgdx}{0}{0}{1} {$\mglevel_{coarse}$};
\node[mglevel] (bup1) at \mgloc{2*\mgdx}{0}{1}{1} {};
\node[mglevel] (bfine) at \mgloc{2*\mgdx}{0}{2}{1} {};
\node[mglevel] (cdown1) at \mgloc{6*\mgdx}{0}{1}{-1} {};
\node[mglevel] (ccoarse) at \mgloc{6*\mgdx}{0}{0}{-1} {};
\node[mglevel] (cup1) at \mgloc{6*\mgdx}{0}{1}{1} {};
\node[mglevel] (cfine) at \mgloc{6*\mgdx}{0}{2}{1} {$\mglevel_{fine}$};
\draw[->,restrict,double]
(coarseinit) -- node [above right] {} (afine);
\draw[->,restrict]
(afine) -- node [above right] {} (bcoarse);
\draw[->,restrict]
(bcoarse) -- node [above right] {} (bup1);
\draw[->,restrict,double]
(bup1) -- node [above right] {} (bfine);
\draw[->,restrict]
(bfine) -- node [above right] {} (cdown1);
\draw[->,restrict]
(cdown1) -- node [above right] {} (ccoarse);
\draw[->,restrict]
(ccoarse) -- node [above right] {} (cup1);
\draw[->,restrict]
(cup1) -- node [above right] {} (cfine);
%grids
\newcommand\mghx{0.9*\mgdx}
\newcommand\mghy{0.9*\mgdy}
\draw[shift=\mgloc{-2*\mgdx}{0}{2}{0},
xstep=\mghy/\mgl{2},
ystep=\mghy/\mgl{2}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\draw[shift=\mgloc{-2*\mgdx}{0}{1}{0},
xstep=\mghy/\mgl{1},
ystep=\mghy/\mgl{1}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\draw[shift=\mgloc{-2*\mgdx}{0}{0}{0},
xstep=\mghy/\mgl{0},
ystep=\mghy/\mgl{0}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\end{scope}
\end{tikzpicture}
\label{fig:FMG}
\end{figure}
\begin{itemize}
\item start wich coarse grid
\item $\vx$ is prolonged using $\mathbb{I}_H^h$ on first visit to each finer level
\item truncation error within one cycle
\item about five work units for many problems
\item highly efficient solution method
\end{itemize}
\end{frame}
\input{slides/MG/TauFAS.tex}
\input{slides/MG/TauCompatibleRelaxation.tex}
\begin{frame}{Basic resilience strategy}
\begin{tikzpicture}
[scale=0.8,every node/.style={scale=0.8},
>=stealth,
control/.style={rectangle,rounded corners,draw=blue!50!black,fill=blue!20,thick,minimum width=5em},
essential/.style={rectangle,rounded corners,draw=red!50!black,fill=red!20,thick,minimum width=5em},
ephemeral/.style={rectangle,rounded corners,draw=gray!50!black,fill=gray!20,thick,minimum width=5em},
statebox/.style={rectangle,draw=green!50!black,thick},
statetitle/.style={rectangle,draw=green!50!black,fill=green!20,thick},
storebox/.style={rectangle,draw=},
rightbrace/.style={decorate,decoration={brace,amplitude=1ex,raise=4pt}},
leftbrace/.style={decorate,decoration={brace,amplitude=1ex,raise=4pt,mirror}}
]
\scriptsize
\node[control,minimum width=8em] (progcontrol) {control};
\node[essential,below=2pt of progcontrol.south,rectangle split,rectangle split parts=2,rectangle split horizontal,minimum width=12em] (progessential) {essential \nodepart{two} coarse};
\node[ephemeral,minimum width=8em,below=2pt of progessential.south] (progephemeral) {ephemeral};
\node[statebox,fit=(progcontrol)(progessential)(progephemeral)] (progbox) {};
\node[above=0pt of progbox.north,anchor=south] {\textbf{program $n=0$}};
\node[control,right=9em of progcontrol] (storecontrol) {control};
\node[essential,below=2pt of storecontrol.south] (storeessential) {essential};
\node[essential,minimum width=4em,below=6pt of storeessential.south, double copy shadow] (storecoarse) {coarse};
\node[statebox,decorate,decoration={bumps,mirror},fit=(storecontrol)(storecoarse)] (storebox) {};
\node[above=1pt of storebox.north,anchor=south] {\textbf{storage}};
\node[control,right=7em of storecontrol] (reccontrol) {control};
\node[essential,below=2pt of reccontrol.south] (recessential) {essential};
\node[statebox,fit=(reccontrol)(recessential)] (recbox) {};
\node[above=0pt of recbox.north,anchor=south] {\textbf{restored $n=0$}};
\node[control,right=6em of reccontrol] (donecontrol) {control};
\node[essential,below=2pt of donecontrol.south] (doneessential) {essential};
\node[ephemeral,below=2pt of doneessential.south] (doneephemeral) {ephemeral};
\node[statebox,fit=(donecontrol)(doneephemeral)] (donebox) {};
\node[above=0pt of donebox.north,anchor=south] {\textbf{recovered $n=N$}};
\draw[decorate,decoration={brace,amplitude=1ex,raise=4pt}] ($(progcontrol.north east) + (3pt,0)$) -- ($(progephemeral.north east) + (3pt,0)$) node[midway,xshift=1ex] (progbrace) {};
\draw[leftbrace] ($(storecontrol.north west) - (4pt,0)$) -- ($(storeessential.south west) - (4pt,0)$) node[midway,xshift=-1ex] (storebrace) {};
\draw[rightbrace] ($(storecontrol.north east) + (4pt,0)$) -- ($(storeessential.south east) + (4pt,0)$) node[midway,xshift=1ex] (storerbrace) {};
\draw[->,shorten >=4pt,shorten <=4pt] (progbrace) -- (storebrace) node[midway,above] (midarrow) {MPI/BLCR};
\node[below=1.4em of midarrow,essential,draw=red!50!gray!70,fill=red!10] (coarserun) {};
\draw[->,dashed,shorten >=14pt,shorten <=4pt] (coarserun) |- (storecoarse) node [near start,below,yshift=-3pt] {\scriptsize $n=1,2,\dotsc,N$};
\draw[->,shorten >=4pt,shorten <=4pt] (storerbrace) -- (recbox.west) node[midway,above,text width=5em,align=center] (midarrow) {restart failed ranks};
\draw[->,shorten >=5pt,shorten <=4pt] (recessential.east) -- (doneessential) node[midway,above,text width=5em,align=center] (fmgrecover) {FMG recovery};
\draw[->,dashed,shorten >=1pt,shorten <=3pt] ($(storecoarse.east) + (1em,0)$) -| (fmgrecover) node[midway,below,xshift=-1em] {\scriptsize $n=1,2,\dotsc,N$};
\draw[->,dashed,shorten >=3pt,shorten <=3pt] (donecontrol.east) -| ($(donecontrol.east) + (3ex,0)$) |- (doneephemeral.east) node[midway,right,text width=4em] {\cverb|malloc| at $n=0$};
\end{tikzpicture}
\begin{description}
\item[control] contains program stack, solver configuration, etc.
\item[essential] program state that cannot be easily reconstructed: time-dependent solution, current optimization/bifurcation iterate
\item[ephemeral] easily recovered structures: assembled matrices, preconditioners, residuals, Runge-Kutta stage solutions
\end{description}
\begin{itemize}
\item Essential state at time/optimization step $n$ is \alert{inherently globally coupled} to step $n-1$ (otherwise we could use an explicit method)
\item \emph{Coarse} level checkpoints are orders of magnitude smaller, but allow rapid recovery of essential state
\item FMG recovery needs only \alert{nearest neighbors}
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Multiscale compression and recovery using $\tau$ form}
\begin{tikzpicture}
[scale=0.7,every node/.style={scale=0.7},
>=stealth,
restrict/.style={thick,double},
prolong/.style={thick,double},
cprestrict/.style={green!50!black,thick,double,dashed},
control/.style={rectangle,red!40!black,draw=red!40!black,thick},
mglevel/.style={rounded rectangle,draw=blue!50!black,fill=blue!20,thick,minimum size=6mm},
checkpoint/.style={rectangle,draw=green!50!black,fill=green!20,thick,minimum size=6mm},
mglevelhide/.style={rounded rectangle,draw=gray!50!black,fill=gray!20,thick,minimum size=6mm},
tau/.style={text=red!50!black,draw=red!50!black,fill=red!10,inner sep=1pt},
crelax/.style={text=green!50!black,fill=green!10,inner sep=0pt}
]
\begin{scope}
\newcommand\mgdx{1.9em}
\newcommand\mgdy{2.5em}
\newcommand\mgloc[4]{(#1 + #4*\mgdx*#3,#2 + \mgdy*#3)}
\node[mglevel] (fine0) at \mgloc{0}{0}{4}{-1} {\mglevelfine};
\node[mglevel] (finem1down0) at \mgloc{0}{0}{3}{-1} {};
\node[mglevel] (cp1down0) at \mgloc{0}{0}{2}{-1} {$\mglevelcp+1$};
\node[mglevel] (cpdown0) at \mgloc{0}{0}{1}{-1} {\mglevelcp};
\node[mglevel] (coarser0) at \mgloc{0}{0}{0}{0} {\ldots};
\node[mglevelhide] (cpup0) at \mgloc{0}{0}{1}{1} {};
\node (cp1up0) at \mgloc{0}{0}{2}{1} {};
\node (cpdown1) at \mgloc{4em}{0}{1}{-1} {};
\node[mglevelhide] (coarser1) at \mgloc{4em}{0}{0}{1} {\ldots};
\node[mglevel] (cpup1) at \mgloc{4em}{0}{1}{1} {\mglevelcp};
\node[mglevel] (cp1up1) at \mgloc{4em}{0}{2}{1} {$\mglevelcp+1$};
\node[mglevel] (finem1up1) at \mgloc{4em}{0}{3}{1} {};
\node[mglevel] (fine1) at \mgloc{4em}{0}{4}{1} {\mglevelfine};
\draw[->,restrict,dashed] (fine0) -- (finem1down0);
\draw[->,restrict] (finem1down0) -- (cp1down0);
\draw[->,restrict] (cp1down0) -- (cpdown0);
\draw[->,restrict,dashed] (cpdown0) -- (coarser0);
\draw[->,prolong,dashed] (coarser0) -- (cpup0);
\draw[->,prolong,dashed] (cpup0) -- (cp1up0);
\draw[->,restrict,dashed] (cpdown1) -- (coarser1);
\draw[->,prolong,dashed] (coarser1) -- (cpup1);
\draw[->,prolong] (cpup1) -- (cp1up1);
\draw[->,prolong] (cp1up1) -- (finem1up1);
\draw[->,prolong,dashed] (finem1up1) -- (fine1);
\node[checkpoint] at (4em + \mgdx*4,\mgdy) (cp) {CP};
\draw[>->,cprestrict] (fine1) -- node[below,sloped] {Restrict} (cp);
\node[left=\mgdx of fine0] (bnanchor) {};
\node[control,fill=red!20] at (1.1*\mgdx,3*\mgdy) {Solve $F(u^n;b^n) = 0$};
\node[mglevel,right=of fine1] (finedt) {next solve};
\draw[->, >=stealth, control] (fine1) to[out=20,in=170] node[above] {$b^{n+1}(u^n,b^n)$} (finedt);
\draw[->, >=stealth, control] (bnanchor) to[out=45,in=155] node[above] {$b^n$} (fine0);
% Recovery process
\begin{scope}[xshift=8*\mgdx]
\node[checkpoint] (rcp) at \mgloc{0}{0}{0}{0} {CP};
\node[mglevel] (r0a) at \mgloc{0}{\mgdy}{0}{0} {CR};
\node[mglevel] (r1a) at \mgloc{0}{\mgdy}{1}{1} {};
\node[mglevel] (r0b) at \mgloc{2*\mgdx}{\mgdy}{0}{0} {CR};
\node[mglevel] (r1b) at \mgloc{2*\mgdx}{\mgdy}{1}{1} {};
\node[mglevel] (r2b) at \mgloc{2*\mgdx}{\mgdy}{2}{1} {\mglevelfine};
\node[mglevel] (r1c) at \mgloc{6*\mgdx}{\mgdy}{1}{-1} {};
\node[mglevel] (r0d) at \mgloc{6*\mgdx}{\mgdy}{0}{0} {CR};
\node[mglevel] (r1d) at \mgloc{6*\mgdx}{\mgdy}{1}{1} {};
\node[mglevel] (r2d) at \mgloc{6*\mgdx}{\mgdy}{2}{1} {\mglevelfine};
\draw[-,prolong,green!50!black] (rcp) -- (r0a);
\draw[->,prolong] (r0a) -- (r1a);
\draw[->,restrict] (r1a) -- (r0b);
\draw[->,restrict] (r0b) -- (r1b);
\draw[->,restrict,dashed] (r1b) -- (r2b);
\draw[->,restrict,dashed] (r2b) -- (r1c);
\draw[->,restrict] (r1c) -- (r0d);
\draw[->,restrict] (r0d) -- (r1d);
\draw[->,restrict,dashed] (r1d) -- (r2d);
\foreach \smooth in {finem1down0, cp1down0, cpdown0, coarser0,
cpup1, cp1up1, finem1up1,
r0b,r1c,r0d,r1d} {
\node[above left=-5pt of \smooth.west,tau] {$\tau$};
}
\node[rectangle,fill=none,draw=green!50!black,thick,fit=(rcp)(r2d)] (recoverbox) {};
\node[rectangle,draw=green!50!black,fill=green!20,thick,minimum size=6mm,above={0cm of recoverbox.south east},anchor=south east] (recover) {FMG Recovery};
\end{scope}
\node (notation) at (\mgdx,5*\mgdy) {
\begin{minipage}{18em}\small\sf
\begin{itemize}\addtolength{\itemsep}{-5pt}
\item checkpoint converged coarse state
\item recover using FMG anchored at $\mglevelcp+1$
\item needs only $\mglevelcp$ neighbor points
\item $\tau$ correction is local
\end{itemize}
\end{minipage}
};
\end{scope}
\end{tikzpicture}
\begin{itemize}
\item Normal multigrid cycles visit all levels moving from $n \to n+1$
\item FMG recovery only accesses levels finer than $\ell_{CP}$
\item Only failed processes and neighbors participate in recovery
\item Lightweight checkpointing for transient adjoint computation
\item Postprocessing applications, e.g., in-situ visualization at high temporal resolution in part of the domain
\end{itemize}
\end{frame}
\begin{frame}{First-order cost model for FAS resilience}
Extend first-order locality-unaware model of Young (1974):
\begin{description}
\item[$\timeW$] time to write a heavy fine-grid checkpointed state
\item[$\timeR$] time to read back lost state
\item[$R$] fraction of forward simulation needed for recomputation from a saved state
\item[$P$] the heavy checkpoint interval
\item[$M$] mean time to failure
\end{description}
Neglect cost of I/O for lightweight coarse-grid checkpoints
\begin{equation}\label{eq:overhead}
\text{Overhead} = 1 - \text{AppUtilization} = \underbrace{\frac{\timeW}{P}}_{\text{writing}}
+ \underbrace{\frac{\timeR}{M}}_{\text{reading after failure}}
+ \underbrace{\frac{R P}{2M}}_{\text{recomputation}}
\end{equation}
Minimized for a heavy checkpointing interval $P = \sqrt{2 M \timeW / R}$
\begin{equation}\label{eq:minoverhead}
\text{Overhead}^* = \sqrt{2 \timeW R / M} + \timeR / M
% $ \text{Overhead}^* = \sqrt{\frac{2 \timeW R}{M}} + \frac{\timeR}{M} $,
\end{equation}
where the first term is always larger than the second.
Conventional checkpointing schemes store only fine-grid state, thus $R=1$ (recovery costs the same as initial computation).
\end{frame}
\begin{frame}[fragile]
\frametitle{Redundant Coarse-Grid Error Detection}
A redundant coarse problem may be used to trivially check for errors:
\begin{figure}
\centering
\begin{tikzpicture}
[>=stealth,
every node/.style={inner sep=2pt},
restrict/.style={thick},
prolong/.style={thick},
mglevel/.style={rounded rectangle,draw=blue!50!black,fill=blue!20,thick,minimum size=4mm},
]
\begin{scope}\scriptsize
\newcommand\mgdx{4.0em}
\newcommand\mgdy{4.0em}
\newcommand\mgl[1]{(pow(2,#1+1))}
\newcommand\mgloc[4]{(#1 + #4*\mgdx*#3,#2 + \mgdy*#3)}
\node[mglevel] (down0) at \mgloc{0}{0}{2}{-1} {\red{1},\green{2},\blue{3},\color{brown}{4}};
\node[mglevel] (down10) at \mgloc{0}{0}{1}{-1} {\red{1},\green{2}};
\node[mglevel] (down11) at \mgloc{0}{0.5*\mgdy}{1}{-1} {\blue{3},\color{brown}{4}};
\node[mglevel] (coarse0) at \mgloc{0}{0}{0}{-1} {\red{1}};
\node[mglevel] (coarse1) at \mgloc{0}{0.5*\mgdy}{0}{-1} {\green{2}};
\node[mglevel] (coarse2) at \mgloc{0}{1.0*\mgdy}{0}{-1} {\blue{3}};
\node[mglevel] (coarse3) at \mgloc{0}{1.5*\mgdy}{0}{-1} {\color{brown}{4}};
\node[] (same) at \mgloc{0}{-0.5*\mgdy}{0}{-1} {Same?};
\draw \mgloc{-0.45*\mgdx}{-1.0*\mgdy}{0}{0} rectangle \mgloc{0.45*\mgdx}{2.0*\mgdy}{0}{0};
\node[mglevel] (up10) at \mgloc{0}{0}{1}{1} {\red{1},\green{2}};
\node[mglevel] (up11) at \mgloc{0}{0.5*\mgdy}{1}{1} {\blue{3},\color{brown}{4}};
\node[mglevel] (up0) at \mgloc{0}{0}{2}{1} {\red{1},\green{2},\blue{3},\color{brown}{4}};
\draw[->,restrict,red] (down0) -- (down10);
\draw[->,restrict,red] (down0) -- (down11);
\draw[->,restrict] (down10) -- (coarse0);
\draw[->,restrict] (down10) -- (coarse1);
\draw[->,restrict] (down11) -- (coarse2);
\draw[->,restrict] (down11) -- (coarse3);
% comm
\draw[->,restrict,red] (down11) -- (coarse0);
\draw[->,restrict,red] (down11) -- (coarse1);
\draw[->,restrict,red] (down10) -- (coarse2);
\draw[->,restrict,red] (down10) -- (coarse3);
\draw[->,restrict] (coarse0) -- (up10);
\draw[->,restrict] (coarse1) -- (up10);
\draw[->,restrict] (coarse2) -- (up11);
\draw[->,restrict] (coarse3) -- (up11);
\draw[->,restrict] (up10) -- (up0);
\draw[->,restrict] (up11) -- (up0);
\end{scope}
\end{tikzpicture}
\label{fig:RedundantMGTest}
\end{figure}
However, this is uninteresting and doesn't exploit the algorithm; can we do anything better?
\end{frame}
\begin{frame}[fragile]
\frametitle{$\tau$-Correction Error Detection}
\begin{block}{Recall}
At convergence, $u^{H*} = \hat I_h^H u^{h*}$ solves the $\tau$-corrected coarse grid equation
$N^H u^H = f^H + \tau_h^H$,
thus $\tau_h^H$ is the ``fine grid feedback'' that makes the coarse grid equation accurate.
\end{block}
\begin{figure}
\centering
\begin{tikzpicture}
[>=stealth,
restrict/.style={thick,double},
prolong/.style={thick,double},
cprestrict/.style={green!50!black,thick,double,dashed},
control/.style={rectangle,red!40!black,draw=red!40!black,thick},
mglevel/.style={rounded rectangle,draw=blue!50!black,fill=blue!20,thick,minimum size=6mm},
checkpoint/.style={rectangle,draw=green!50!black,fill=green!20,thick,minimum size=6mm},
mglevelhide/.style={rounded rectangle,draw=gray!50!black,fill=gray!20,thick,minimum size=6mm},
tau/.style={text=red!50!black,draw=red!50!black,fill=red!10,inner sep=1pt},
crelax/.style={text=green!50!black,fill=green!10,inner sep=0pt}
]
\newcommand\mgdx{2.0em}
\newcommand\mgdy{2.5em}
\newcommand\mgloc[4]{(#1 + #4*\mgdx*#3,#2 + \mgdy*#3)}
\begin{scope}
\node[mglevel] (fineright) at \mgloc{0}{0}{0}{0} {\mglevel$_{fine}$};
\node[mglevel] (checkright) at \mgloc{0}{0}{2}{0} {\mglevel$_{check}$};
\draw[->,restrict] (fineright) -- (checkright);
\node[] (finerightnorm) at \mgloc{3*\mgdx}{0}{0}{0} {$\abs{N^h u^{h*} - f^h}$ small};
\node[] (coarserightnorm) at \mgloc{4.0*\mgdx}{0}{2}{0} {$\abs{N^H u^{H*} - f^H - \tau_h^H}$ small};
\node[mglevel] (finewrong) at \mgloc{8*\mgdx}{0}{0}{0} {\mglevel$_{fine}$};
\node[mglevel] (checkwrong) at \mgloc{8*\mgdx}{0}{2}{0} {\mglevel$_{check}$};
\draw[->,restrict] (finewrong) -- (checkwrong);
\node[] (finewrongnorm) at \mgloc{11*\mgdx}{0}{0}{0} {$\abs{N^h u^{h*} - f^h}$ small};
\node[] (coarsewrongnorm) at \mgloc{12.0*\mgdx}{0}{2}{0} {$\abs{N^H u^{H*} - f^H - \tau_h^H}$ large};
\node[green] (OK) at \mgloc{3*\mgdx}{0}{1}{0} {\checkmark};
\node[red] (BAD) at \mgloc{11*\mgdx}{0}{1}{0} {X};
\end{scope}
\end{tikzpicture}
\end{figure}
\begin{itemize}
\item \emph{Local} detection if $\abs{N^H u^{H*} - f^H - \tau_h^H}$ is large
\item incorrect result indicates error in fine grid residual evaluation (likely), restriction, or coarse grid residual.
\end{itemize}
\end{frame}
\begin{frame}{Reducing memory bandwidth}
\includegraphics[width=\textwidth]{figures/MG/SRMGWindow}
\begin{itemize}
\item Sweep through ``coarse'' grid with moving window
\item Zoom in on new slab, construct fine grid ``window'' in-cache
\item Interpolate to new fine grid, apply pipelined smoother ($s$-step)
\item Compute residual, accumulate restriction of state and residual into coarse grid, expire slab from window
\end{itemize}
\end{frame}
\begin{frame}{Arithmetic intensity of sweeping visit}
\begin{itemize}
\item Assume 3D cell-centered, 7-point stencil
\item 14 flops/cell for second order interpolation
\item $\ge 15$ flops/cell for fine-grid residual or point smoother
\item 2 flops/cell to enforce coarse-grid compatibility
\item 2 flops/cell for plane restriction
\item assume coarse grid points are reused in cache
\item Fused visit reads $u^H$ and writes $\hat I_h^H u^h$ and $I_h^H r^h$
\item Arithmetic Intensity
\begin{equation}
\frac{{\overbrace{15}^{\text{interp}}} + {\overbrace{2\cdot (15+2)}^{\text{compatible relaxation}}} + \overbrace{2\cdot 15}^{\text{smooth}} + \overbrace{15}^{\text{residual}} + \overbrace{2}^{\text{restrict}}}{3 \cdot \texttt{sizeof(scalar)} / \underbrace{2^3}_{\text{coarsening}}} \gtrsim 30
\end{equation}
\end{itemize}
\end{frame}
\begin{frame}{Regularity}
Accuracy of recovery depends on operator regularity
\begin{itemize}
\item Even with regularity, we can only converge up to discretization error, unless we add a \emph{consistent} fine-grid residual evaluation
\item Visit fine grid with some overlap, but patches do not agree exactly in overlap
\item Need decay length for high-frequency error components (those that restrict to zero) that is bounded with respect to grid size
\item Required overlap $J$ is proportional to the number of cells to cover decay length
\item Can enrich coarse space along boundary, but causes loss of coarse-grid sparsity
\item Brandt and Diskin (1994) has two-grid LFA showing $J \lesssim 2$ is sufficient for Laplacian
\item With $L$ levels, overlap $J(k)$ on level $k$,
\begin{equation*}
2J(k) \ge s (L-k+1)
\end{equation*}
where $s$ is the smoothness order of the solution or the discretization order (whichever is smaller)
\end{itemize}
\end{frame}
\input{slides/MG/MGAndHMM.tex}
\input{slides/MG/CoolThings.tex}
\end{document}