You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello,
I am trying to apply deeplift on my image dataset with densenet121 model but I get error:
my code is:
import deeplift
from deeplift.layers import NonlinearMxtsMode
from deeplift.conversion import kerasapi_conversion as kc
from tensorflow.keras.layers import ZeroPadding2D,BatchNormalization,Conv2D,Concatenate
saved_model_file='model.h5'
Three different models, one each for RevealCancel, Gradient and GuidedBackprop
revealcancel_model = kc.convert_model_from_saved_files(
h5_file=saved_model_file,
nonlinear_mxts_mode=NonlinearMxtsMode.RevealCancel)
grad_model = kc.convert_model_from_saved_files(
h5_file=saved_model_file,
nonlinear_mxts_mode=NonlinearMxtsMode.Gradient)
guided_backprop_model = kc.convert_model_from_saved_files(
h5_file=saved_model_file,
nonlinear_mxts_mode=NonlinearMxtsMode.GuidedBackprop)
/usr/local/lib/python3.6/dist-packages/deeplift/conversion/kerasapi_conversion.py in convert_functional_model(model_config, nonlinear_mxts_mode, verbose, dense_mxts_mode, conv_mxts_mode, maxpool_deeplift_mode, layer_overrides, custom_conversion_funcs)
835 maxpool_deeplift_mode=maxpool_deeplift_mode,
836 layer_overrides=layer_overrides,
--> 837 custom_conversion_funcs=custom_conversion_funcs)
838
839 for output_layer in converted_model_container.output_layers:
/usr/local/lib/python3.6/dist-packages/deeplift/conversion/kerasapi_conversion.py in functional_container_conversion(config, name, verbose, nonlinear_mxts_mode, dense_mxts_mode, conv_mxts_mode, maxpool_deeplift_mode, layer_overrides, custom_conversion_funcs, outer_inbound_node_infos, node_id_to_deeplift_layers, node_id_to_input_node_info, name_to_deeplift_layer)
588 else:
589 conversion_function = layer_name_to_conversion_function(
--> 590 layer_config["class_name"])
591
592 #We need to deal with the case of shared layers, i.e. the same
/usr/local/lib/python3.6/dist-packages/deeplift/conversion/kerasapi_conversion.py in layer_name_to_conversion_function(layer_name)
345 # lowercase to create resistance to capitalization changes
346 # was a problem with previous Keras versions
--> 347 return name_dict[layer_name.lower()]
348
349
I would be grateful if you have any idea to solve it
The text was updated successfully, but these errors were encountered:
Hello,
I am trying to apply deeplift on my image dataset with densenet121 model but I get error:
my code is:
import deeplift
from deeplift.layers import NonlinearMxtsMode
from deeplift.conversion import kerasapi_conversion as kc
from tensorflow.keras.layers import ZeroPadding2D,BatchNormalization,Conv2D,Concatenate
saved_model_file='model.h5'
Three different models, one each for RevealCancel, Gradient and GuidedBackprop
revealcancel_model = kc.convert_model_from_saved_files(
h5_file=saved_model_file,
nonlinear_mxts_mode=NonlinearMxtsMode.RevealCancel)
grad_model = kc.convert_model_from_saved_files(
h5_file=saved_model_file,
nonlinear_mxts_mode=NonlinearMxtsMode.Gradient)
guided_backprop_model = kc.convert_model_from_saved_files(
h5_file=saved_model_file,
nonlinear_mxts_mode=NonlinearMxtsMode.GuidedBackprop)
and my error is:
KeyError: 'zeropadding2d'
KeyError Traceback (most recent call last)
in ()
14 guided_backprop_model = kc.convert_model_from_saved_files(
15 h5_file=saved_model_file,
---> 16 nonlinear_mxts_mode=NonlinearMxtsMode.GuidedBackprop)
3 frames
/usr/local/lib/python3.6/dist-packages/deeplift/conversion/kerasapi_conversion.py in convert_model_from_saved_files(h5_file, json_file, yaml_file, **kwargs)
411 layer_config["config"]["weights"] = layer_weights
412
--> 413 return model_conversion_function(model_config=model_config, **kwargs)
414
415
/usr/local/lib/python3.6/dist-packages/deeplift/conversion/kerasapi_conversion.py in convert_functional_model(model_config, nonlinear_mxts_mode, verbose, dense_mxts_mode, conv_mxts_mode, maxpool_deeplift_mode, layer_overrides, custom_conversion_funcs)
835 maxpool_deeplift_mode=maxpool_deeplift_mode,
836 layer_overrides=layer_overrides,
--> 837 custom_conversion_funcs=custom_conversion_funcs)
838
839 for output_layer in converted_model_container.output_layers:
/usr/local/lib/python3.6/dist-packages/deeplift/conversion/kerasapi_conversion.py in functional_container_conversion(config, name, verbose, nonlinear_mxts_mode, dense_mxts_mode, conv_mxts_mode, maxpool_deeplift_mode, layer_overrides, custom_conversion_funcs, outer_inbound_node_infos, node_id_to_deeplift_layers, node_id_to_input_node_info, name_to_deeplift_layer)
588 else:
589 conversion_function = layer_name_to_conversion_function(
--> 590 layer_config["class_name"])
591
592 #We need to deal with the case of shared layers, i.e. the same
/usr/local/lib/python3.6/dist-packages/deeplift/conversion/kerasapi_conversion.py in layer_name_to_conversion_function(layer_name)
345 # lowercase to create resistance to capitalization changes
346 # was a problem with previous Keras versions
--> 347 return name_dict[layer_name.lower()]
348
349
I would be grateful if you have any idea to solve it
The text was updated successfully, but these errors were encountered: