forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pose2SLAMExample.cpp
128 lines (105 loc) · 5.87 KB
/
Pose2SLAMExample.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Pose2SLAMExample.cpp
* @brief A 2D Pose SLAM example
* @date Oct 21, 2010
* @author Yong Dian Jian
*/
/**
* A simple 2D pose slam example
* - The robot moves in a 2 meter square
* - The robot moves 2 meters each step, turning 90 degrees after each step
* - The robot initially faces along the X axis (horizontal, to the right in 2D)
* - We have full odometry between pose
* - We have a loop closure constraint when the robot returns to the first position
*/
// In planar SLAM example we use Pose2 variables (x, y, theta) to represent the robot poses
#include <gtsam/geometry/Pose2.h>
// We will use simple integer Keys to refer to the robot poses.
#include <gtsam/inference/Key.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
// Here we will use Between factors for the relative motion described by odometry measurements.
// We will also use a Between Factor to encode the loop closure constraint
// Also, we will initialize the robot at the origin using a Prior factor.
#include <gtsam/slam/BetweenFactor.h>
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
// are nonlinear factors, we will need a Nonlinear Factor Graph.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
// Finally, once all of the factors have been added to our factor graph, we will want to
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
// a Gauss-Newton solver
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
// Once the optimized values have been calculated, we can also calculate the marginal covariance
// of desired variables
#include <gtsam/nonlinear/Marginals.h>
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
// nonlinear functions around an initial linearization point, then solve the linear system
// to update the linearization point. This happens repeatedly until the solver converges
// to a consistent set of variable values. This requires us to specify an initial guess
// for each variable, held in a Values container.
#include <gtsam/nonlinear/Values.h>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv) {
// 1. Create a factor graph container and add factors to it
NonlinearFactorGraph graph;
// 2a. Add a prior on the first pose, setting it to the origin
// A prior factor consists of a mean and a noise model (covariance matrix)
auto priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
graph.addPrior(1, Pose2(0, 0, 0), priorNoise);
// For simplicity, we will use the same noise model for odometry and loop closures
auto model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
// 2b. Add odometry factors
// Create odometry (Between) factors between consecutive poses
graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(2, 0, 0), model);
graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(2, 0, M_PI_2), model);
graph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(2, 0, M_PI_2), model);
graph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(2, 0, M_PI_2), model);
// 2c. Add the loop closure constraint
// This factor encodes the fact that we have returned to the same pose. In real systems,
// these constraints may be identified in many ways, such as appearance-based techniques
// with camera images. We will use another Between Factor to enforce this constraint:
graph.emplace_shared<BetweenFactor<Pose2> >(5, 2, Pose2(2, 0, M_PI_2), model);
graph.print("\nFactor Graph:\n"); // print
// 3. Create the data structure to hold the initialEstimate estimate to the solution
// For illustrative purposes, these have been deliberately set to incorrect values
Values initialEstimate;
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2));
initialEstimate.insert(3, Pose2(4.1, 0.1, M_PI_2));
initialEstimate.insert(4, Pose2(4.0, 2.0, M_PI));
initialEstimate.insert(5, Pose2(2.1, 2.1, -M_PI_2));
initialEstimate.print("\nInitial Estimate:\n"); // print
// 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer
// The optimizer accepts an optional set of configuration parameters,
// controlling things like convergence criteria, the type of linear
// system solver to use, and the amount of information displayed during
// optimization. We will set a few parameters as a demonstration.
GaussNewtonParams parameters;
// Stop iterating once the change in error between steps is less than this value
parameters.relativeErrorTol = 1e-5;
// Do not perform more than N iteration steps
parameters.maxIterations = 100;
// Create the optimizer ...
GaussNewtonOptimizer optimizer(graph, initialEstimate, parameters);
// ... and optimize
Values result = optimizer.optimize();
result.print("Final Result:\n");
// 5. Calculate and print marginal covariances for all variables
cout.precision(3);
Marginals marginals(graph, result);
cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
cout << "x4 covariance:\n" << marginals.marginalCovariance(4) << endl;
cout << "x5 covariance:\n" << marginals.marginalCovariance(5) << endl;
return 0;
}