forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pose2SLAMExample_g2o.cpp
98 lines (84 loc) · 3.32 KB
/
Pose2SLAMExample_g2o.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Pose2SLAMExample_g2o.cpp
* @brief A 2D Pose SLAM example that reads input from g2o, converts it to a factor graph and does the
* optimization. Output is written on a file, in g2o format
* Syntax for the script is ./Pose2SLAMExample_g2o input.g2o output.g2o
* @date May 15, 2014
* @author Luca Carlone
*/
#include <gtsam/slam/dataset.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <fstream>
using namespace std;
using namespace gtsam;
// HOWTO: ./Pose2SLAMExample_g2o inputFile outputFile (maxIterations) (tukey/huber)
int main(const int argc, const char *argv[]) {
string kernelType = "none";
int maxIterations = 100; // default
string g2oFile = findExampleDataFile("noisyToyGraph.txt"); // default
// Parse user's inputs
if (argc > 1) {
g2oFile = argv[1]; // input dataset filename
}
if (argc > 3) {
maxIterations = atoi(argv[3]); // user can specify either tukey or huber
}
if (argc > 4) {
kernelType = argv[4]; // user can specify either tukey or huber
}
// reading file and creating factor graph
NonlinearFactorGraph::shared_ptr graph;
Values::shared_ptr initial;
bool is3D = false;
if (kernelType.compare("none") == 0) {
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
}
if (kernelType.compare("huber") == 0) {
std::cout << "Using robust kernel: huber " << std::endl;
boost::tie(graph, initial) =
readG2o(g2oFile, is3D, KernelFunctionTypeHUBER);
}
if (kernelType.compare("tukey") == 0) {
std::cout << "Using robust kernel: tukey " << std::endl;
boost::tie(graph, initial) =
readG2o(g2oFile, is3D, KernelFunctionTypeTUKEY);
}
// Add prior on the pose having index (key) = 0
auto priorModel = //
noiseModel::Diagonal::Variances(Vector3(1e-6, 1e-6, 1e-8));
graph->addPrior(0, Pose2(), priorModel);
std::cout << "Adding prior on pose 0 " << std::endl;
GaussNewtonParams params;
params.setVerbosity("TERMINATION");
if (argc > 3) {
params.maxIterations = maxIterations;
std::cout << "User required to perform maximum " << params.maxIterations
<< " iterations " << std::endl;
}
std::cout << "Optimizing the factor graph" << std::endl;
GaussNewtonOptimizer optimizer(*graph, *initial, params);
Values result = optimizer.optimize();
std::cout << "Optimization complete" << std::endl;
std::cout << "initial error=" << graph->error(*initial) << std::endl;
std::cout << "final error=" << graph->error(result) << std::endl;
if (argc < 3) {
result.print("result");
} else {
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
NonlinearFactorGraph::shared_ptr graphNoKernel;
Values::shared_ptr initial2;
boost::tie(graphNoKernel, initial2) = readG2o(g2oFile);
writeG2o(*graphNoKernel, result, outputFile);
std::cout << "done! " << std::endl;
}
return 0;
}