-
Notifications
You must be signed in to change notification settings - Fork 20
/
nextflow_schema.json
1694 lines (1694 loc) · 133 KB
/
nextflow_schema.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"$schema": "http://json-schema.org/draft-07/schema",
"$id": "https://raw.githubusercontent.com/nf-core/funcscan/master/nextflow_schema.json",
"title": "nf-core/funcscan pipeline parameters",
"description": "Pipeline for screening for functional components of assembled contigs",
"type": "object",
"definitions": {
"input_output_options": {
"title": "Input/output options",
"type": "object",
"fa_icon": "fas fa-terminal",
"description": "Define where the pipeline should find input data and save output data.",
"required": ["input", "outdir"],
"properties": {
"input": {
"type": "string",
"format": "file-path",
"exists": true,
"schema": "assets/schema_input.json",
"mimetype": "text/csv",
"pattern": "^\\S+\\.csv$",
"description": "Path to comma-separated file containing sample names and paths to corresponding FASTA files, and optional annotation files.",
"help_text": "Before running the pipeline, you will need to create a design file with information about the samples to be scanned by nf-core/funcscan, containing at a minimum sample names and paths to contigs. Use this parameter to specify its location. It has to be a two or four column comma-separated file with a header row (`sample,fasta` or `sample,fasta,protein,gbk`). See [usage docs](https://nf-co.re/funcscan/usage#samplesheet-input).",
"fa_icon": "fas fa-file-csv"
},
"outdir": {
"type": "string",
"format": "directory-path",
"description": "The output directory where the results will be saved. You have to use absolute paths to storage on Cloud infrastructure.",
"fa_icon": "fas fa-folder-open"
},
"email": {
"type": "string",
"description": "Email address for completion summary.",
"fa_icon": "fas fa-envelope",
"help_text": "Set this parameter to your e-mail address to get a summary e-mail with details of the run sent to you when the workflow exits. If set in your user config file (`~/.nextflow/config`) then you don't need to specify this on the command line for every run.",
"pattern": "^([a-zA-Z0-9_\\-\\.]+)@([a-zA-Z0-9_\\-\\.]+)\\.([a-zA-Z]{2,5})$"
},
"multiqc_title": {
"type": "string",
"description": "MultiQC report title. Printed as page header, used for filename if not otherwise specified.",
"fa_icon": "fas fa-file-signature"
}
},
"help_text": ""
},
"screening_type_activation": {
"title": "Screening type activation",
"type": "object",
"description": "These parameters influence which workflow (ARG, AMP and/or BGC) to activate.",
"default": "",
"properties": {
"run_amp_screening": {
"type": "boolean",
"description": "Activate antimicrobial peptide genes screening tools.",
"fa_icon": "fas fa-check-circle"
},
"run_arg_screening": {
"type": "boolean",
"description": "Activate antimicrobial resistance gene screening tools.",
"fa_icon": "fas fa-check-circle"
},
"run_bgc_screening": {
"type": "boolean",
"description": "Activate biosynthetic gene cluster screening tools.",
"fa_icon": "fas fa-check-circle"
}
},
"fa_icon": "fa fa-list-ol"
},
"taxonomic_classification_general_options": {
"title": "Taxonomic classification: general options",
"type": "object",
"description": "These options influence whether to activate the taxonomic classification of the input nucleotide sequences.",
"default": "",
"properties": {
"run_taxa_classification": {
"type": "boolean",
"description": "Activates the taxonomic classification of input nucleotide sequences.",
"help_text": "This flag turns on the taxonomic classification of input nucleotide sequences. The taxonomic annotations should be turned on if the input metagenomes' bacterial sources are unknown, which can help identify the source of the AMP, BGC or ARG hit obtained for laboratory experiments. This flag should be turned off (which is by default) if the input nucleotide sequences represent a single known genome or *nf-core/mag* was run beforehand. Turning on this flag relatively decreases the pipeline speed and requires >8GB RAM. Due to the size of the resulting table, the final summary is in a zipped format.",
"fa_icon": "fas fa-check-circle"
},
"taxa_classification_tool": {
"type": "string",
"default": "mmseqs2",
"help_text": "This flag specifies which tool for taxonomic classification should be activated. At the moment only 'MMseqs2' is incorporated in the pipeline.",
"description": "Specifies the tool used for taxonomic classification.",
"fa_icon": "fas fa-tools"
}
},
"fa_icon": "fas fa-tag"
},
"taxonomic_classification_mmseqs2_databases": {
"title": "Taxonomic classification: MMseqs2 databases",
"type": "object",
"description": "These parameters influence the database to be used in classifying the taxonomy.",
"default": "",
"properties": {
"taxa_classification_mmseqs_db": {
"type": "string",
"description": "Specify a path to MMseqs2-formatted database.",
"help_text": "Specify a path to a database that is prepared in MMseqs2 format as detailed in the [documentation](https://mmseqs.com/latest/userguide.pdf).\n\nThe contents of the directory should have files such as `<dbname>.version` and `<dbname>.taxonomy` in the top level.",
"fa_icon": "fas fa-database"
},
"taxa_classification_mmseqs_db_id": {
"type": "string",
"default": "Kalamari",
"help_text": "Specify which MMseqs2-formatted database to use to classify the input contigs. This can be a nucleotide or amino acid database that includes taxonomic classifications. For example, both GTDB (an amico acid database) and SILVA (a nucleotide database) are supported by MMseqs2. More details can be found in the [documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - mmseqs databases <name>",
"description": "Specify the label of the database to be used.",
"fa_icon": "fas fa-address-card"
},
"taxa_classification_mmseqs_db_savetmp": {
"type": "boolean",
"help_text": "This flag saves the temporary files from downloading the database and formatting it in the MMseqs2 format into the output folder. More details can be found in the [documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - mmseqs databases: `--remove-tmp-files`",
"description": "Specify whether the temporary files should be saved.",
"fa_icon": "fas fa-save"
}
},
"fa_icon": "fas fa-tag"
},
"taxonomic_classification_mmseqs2_taxonomy": {
"title": "Taxonomic classification: MMseqs2 taxonomy",
"type": "object",
"description": "These parameters influence the taxonomic classification step.",
"default": "",
"properties": {
"taxa_classification_mmseqs_taxonomy_savetmp": {
"type": "boolean",
"help_text": "This flag saves the temporary files from creating the taxonomy database and the final `tsv` file into the output folder. More details can be found in the [documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - mmseqs taxonomy: `--remove-tmp-files`",
"description": "Specify whether to save the temporary files.",
"fa_icon": "fas fa-save"
},
"taxa_classification_mmseqs_taxonomy_searchtype": {
"type": "integer",
"default": 2,
"help_text": "Specify the type of alignment to be carried out between the query database and the reference MMseqs2 database. This can be set to '0' for automatic detection, '1' for amino acid alignment, '2' for translating the inputs and running the alignment on the translated sequences, '3' nucleotide based alignment and '4' for the translated nucleotide sequences alignment. More details can be found in the [documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - mmseqs taxonomy: `--search-type`",
"description": "Specify the alignment type between database and query.",
"fa_icon": "fas fa-align-center"
},
"taxa_classification_mmseqs_taxonomy_lcaranks": {
"type": "string",
"default": "kingdom,phylum,class,order,family,genus,species",
"help_text": "Specify the taxonomic ranks to include in the taxonomic lineage column in the final `.tsv` file. For example, 'kingdom,phylum,class,order,family,genus,species'. More details can be found in the [documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - mmseqs taxonomy: `--lca-ranks`",
"description": "Specify the taxonomic levels to display in the result table.",
"fa_icon": "fas fa-stream"
},
"taxa_classification_mmseqs_taxonomy_taxlineage": {
"type": "integer",
"default": 1,
"help_text": "This flag specifies whether the taxonomic lineage should be included in the output `.tsv` file. The taxonomic lineage is obtained from the internal module of `mmseqs/taxonomy` that infers the last common ancestor to classify the taxonomy. A value of '0' writes no taxonomic lineage, a value of '1' adds a column with the full lineage names prefixed with abbreviation of the lineage level, e.g. `k_Prokaryotes;p_Bacteroidetes;c_....;o_....;f_....;g_....;s_....,` while a value of '2' adds a column with the full NCBI taxids lineage,e.g. `1324;2345;4546;5345`. More details can be found in the [documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - mmseqs taxonomy: `--tax-lineage`",
"description": "Specify whether to include or remove the taxonomic lineage.",
"fa_icon": "fab fa-audible"
},
"taxa_classification_mmseqs_taxonomy_sensitivity": {
"type": "string",
"default": "5.0",
"help_text": "This flag specifies the speed and sensitivity of the taxonomic search. It stands for how many kmers should be produced during the preliminary seeding stage. A very fast search requires a low value e.g. '1.0' and a a very sensitive search requires e.g. '7.0'. More details can be found in the [documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - mmseqs taxonomy: `--s`",
"description": "Specify the speed and sensitivity for taxonomy assignment.",
"fa_icon": "fas fa-history"
},
"taxa_classification_mmseqs_taxonomy_orffilters": {
"type": "string",
"default": "2.0",
"help_text": "This flag specifies the sensitivity used for prefiltering the query ORF. Before the taxonomy-assigning step, MMseqs2 searches the predicted ORFs against the provided database. This value influences the speed with which the search is carried out. More details can be found in the [documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - mmseqs taxonomy: `--orf-filter-s`",
"description": "Specify the ORF search sensitivity in the prefilter step.",
"fa_icon": "fas fa-history"
},
"taxa_classification_mmseqs_taxonomy_lcamode": {
"type": "integer",
"default": 3,
"help_text": "This flag specifies the strategy used for assigning the last common ancestor (LCA). MMseqs2 assigns taxonomy based on an accelerated approximation of the 2bLCA protocol and uses the value of '3'. In this mode, the taxonomic assignment is based not only on usual alignment parameters but also considers the taxonomic classification of the LCA. When the value '4' is used the LCA is assigned based on all the equal scoring top hits. If the value '1' is used the LCA assignment is disregarded and the taxonomic assignment is based on usual alignment parameters like E-value and coverage. More details can be found in the [documentation](https://mmseqs.com/latest/userguide.pdf). \n\n> Modifies tool parameter(s):\n> - mmseqs taxonomy: `--lca-mode`",
"description": "Specify the mode to assign the taxonomy.",
"fa_icon": "fas fa-broom"
},
"taxa_classification_mmseqs_taxonomy_votemode": {
"type": "integer",
"default": 1,
"help_text": "This flag assigns the mode value with which the weights are computed. The value of '0' stands for uniform weights of taxonomy assignments, the value of '1' uses the minus log E-value and '2' the actual score. More details can be found in the [documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - mmseqs taxonomy: `--vote-mode`",
"description": "Specify the weights of the taxonomic assignment.",
"fa_icon": "fas fa-balance-scale-right"
}
},
"fa_icon": "fas fa-tag"
},
"annotation_general_options": {
"title": "Annotation: general options",
"type": "object",
"description": "These options influence the generation of annotation files required for downstream steps in ARG, AMP, and BGC workflows.",
"default": "",
"properties": {
"annotation_tool": {
"type": "string",
"default": "pyrodigal",
"description": "Specify which annotation tool to use for some downstream tools.",
"enum": ["prodigal", "pyrodigal", "prokka", "bakta"],
"fa_icon": "fas fa-edit"
},
"save_annotations": {
"type": "boolean",
"description": "Specify whether to save gene annotations in the results directory.",
"fa_icon": "fas fa-save"
}
},
"fa_icon": "fas fa-file-signature",
"help_text": ""
},
"annotation_bakta": {
"title": "Annotation: BAKTA",
"type": "object",
"description": "BAKTA is a tool developed to annotate bacterial genomes and plasmids from both isolates and MAGs. More info: https://github.com/oschwengers/bakta",
"default": "",
"properties": {
"annotation_bakta_db": {
"type": "string",
"fa_icon": "fas fa-database",
"description": "Specify a path to a local copy of a BAKTA database.",
"help_text": "If a local copy of a BAKTA database exists, specify the path to that database which is prepared in a BAKTA format. Otherwise this will be downloaded for you.\n\nThe contents of the directory should have files such as `*.dmnd` in the top level."
},
"annotation_bakta_db_downloadtype": {
"type": "string",
"description": "Download full or light version of the Bakta database if not supplying own database.",
"help_text": "If you want the pipeline to download the Bakta database for you, you can choose between the full (33.1 GB) and light (1.3 GB) version. The full version is generally recommended for best annotation results, because it contains all of these:\n\n- UPS: unique protein sequences identified via length and MD5 hash digests (100% coverage & 100% sequence identity)\n- IPS: identical protein sequences comprising seeds of UniProt's UniRef100 protein sequence clusters\n- PSC: protein sequences clusters comprising seeds of UniProt's UniRef90 protein sequence clusters\n- PSCC: protein sequences clusters of clusters comprising annotations of UniProt's UniRef50 protein sequence clusters\n\nIf download bandwidth, storage, memory, or run duration requirements become an issue, go for the light version (which only contains PSCCs) by modifying the `annotation_bakta_db_downloadtype` flag.\n\nMore details can be found in the [documentation](https://github.com/oschwengers/bakta#database)\n\n> Modifies tool parameter(s):\n> - BAKTA_DBDOWNLOAD: `--type`",
"fa_icon": "fas fa-database",
"enum": ["full", "light"],
"default": "full"
},
"annotation_bakta_singlemode": {
"type": "boolean",
"description": "Use the default genome-length optimised mode (rather than the metagenome mode).",
"help_text": "By default, Bakta's `--meta` mode is used in the pipeline to improve the gene prediction of highly fragmented metagenomes.\n\nBy specifying this parameter Bakta will instead use its default mode that is optimised for singular 'complete' genome sequences.\n\nMore details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--meta`",
"fa_icon": "fas fa-dna"
},
"annotation_bakta_mincontiglen": {
"type": "integer",
"default": 1,
"description": "Specify the minimum contig size.",
"help_text": "Specify the minimum contig size that would be annotated by BAKTA.\nIf run with '--annotation_bakta_compliant', the minimum contig length must be set to 200. More details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--min-contig-length`",
"minimum": 1,
"fa_icon": "fas fa-align-left"
},
"annotation_bakta_translationtable": {
"type": "integer",
"default": 11,
"description": "Specify the genetic code translation table.",
"help_text": "Specify the genetic code translation table used for translation of nucleotides to amino acids. \nAll possible genetic codes (1-25) used for gene annotation can be found [here](https://en.wikipedia.org/wiki/List_of_genetic_codes). More details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--translation-table`",
"minimum": 1,
"maximum": 25,
"fa_icon": "fas fa-border-all"
},
"annotation_bakta_gram": {
"type": "string",
"default": "?",
"enum": ["+", "-", "?"],
"description": "Specify the type of bacteria to be annotated to detect signaling peptides.",
"help_text": "Specify the type of bacteria expected in the input dataset for correct annotation of the signal peptide predictions. More details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--gram`",
"fa_icon": "far fa-plus-square"
},
"annotation_bakta_complete": {
"type": "boolean",
"description": "Specify that all contigs are complete replicons.",
"help_text": "This flag expects contigs that make up complete chromosomes and/or plasmids. By calling it, the user ensures that the contigs are complete replicons. More details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--complete`",
"fa_icon": "far fa-circle"
},
"annotation_bakta_renamecontigheaders": {
"type": "boolean",
"description": "Changes the original contig headers.",
"help_text": "This flag specifies that the contig headers should be rewritten. More details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--keep-contig-headers`",
"fa_icon": "fas fa-remove-format"
},
"annotation_bakta_compliant": {
"type": "boolean",
"description": "Clean the result annotations to standardise them to Genbank/ENA conventions.",
"help_text": "The resulting annotations are cleaned up to standardise them to Genbank/ENA/DDJB conventions. CDS without any attributed hits and those without gene symbols or product descriptions different from hypothetical will be marked as 'hypothetical'.\nWhen activated the `--min-contig-length` will be set to 200. More info can be found [here](https://github.com/oschwengers/bakta).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--compliant`",
"fa_icon": "fas fa-check-circle"
},
"annotation_bakta_trna": {
"type": "boolean",
"description": "Activate tRNA detection & annotation.",
"help_text": "This flag activates [tRNAscan-SE 2.0](http://lowelab.ucsc.edu/tRNAscan-SE/) that predicts tRNA genes. More details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--skip-trna`",
"fa_icon": "fas fa-forward"
},
"annotation_bakta_tmrna": {
"type": "boolean",
"description": "Activate tmRNA detection & annotation.",
"help_text": "This flag activates [Aragorn](http://www.ansikte.se/ARAGORN/) that predicts tmRNA genes. More details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--skip-tmrna`\n`",
"fa_icon": "fas fa-forward"
},
"annotation_bakta_rrna": {
"type": "boolean",
"description": "Activate rRNA detection & annotation.",
"help_text": "This flag activates [Infernal vs. Rfam rRNA covariance models](http://eddylab.org/infernal/) that predicts rRNA genes. More details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--rrna`",
"fa_icon": "fas fa-forward"
},
"annotation_bakta_ncrna": {
"type": "boolean",
"description": "Activate ncRNA detection & annotation.",
"help_text": "This flag activates [Infernal vs. Rfam ncRNA covariance models](http://eddylab.org/infernal/) that predicts ncRNA genes.\nBAKTA distinguishes between ncRNA genes and (cis-regulatory) regions to enable the distinction of feature overlap detection.\nThis includes distinguishing between ncRNA gene types: sRNA, antisense, ribozyme and antitoxin. More details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--ncrna`",
"fa_icon": "fas fa-forward"
},
"annotation_bakta_ncrnaregion": {
"type": "boolean",
"description": "Activate ncRNA region detection & annotation.",
"help_text": "This flag activates [Infernal vs. Rfam ncRNA covariance models](http://eddylab.org/infernal/) that predicts ncRNA cis-regulatory regions.\nBAKTA distinguishes between ncRNA genes and (cis-regulatory) regions to enable the distinction of feature overlap detection.\nThis including distinguishing between ncRNA (cis-regulatory) region types: riboswitch, thermoregulator, leader and frameshift element. More details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--skip-ncrna-region`",
"fa_icon": "fas fa-forward"
},
"annotation_bakta_crispr": {
"type": "boolean",
"description": "Activate CRISPR array detection & annotation.",
"help_text": "This flag activates [PILER-CR](https://www.drive5.com/pilercr/) that predicts CRISPR arrays. More details can be found in the [documentation](https://github.com/oschwengers/bakta/blob/main/README.md#usage).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--skip-crispr`",
"fa_icon": "fas fa-forward"
},
"annotation_bakta_skipcds": {
"type": "boolean",
"description": "Skip CDS detection & annotation.",
"help_text": "This flag skips CDS prediction that is done by [PYRODIGAL](https://github.com/althonos/pyrodigal) with which the distinct prediction for complete replicons and uncompleted contigs is done.\nFor more information on how BAKTA predicts CDS please refer to the BAKTA [documentation](https://github.com/oschwengers/bakta).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--skip-cds`",
"fa_icon": "fas fa-forward"
},
"annotation_bakta_pseudo": {
"type": "boolean",
"description": "Activate pseudogene detection & annotation.",
"help_text": "This flag activates the search for reference Phytochelatin Synthase genes (PCSs) using 'hypothetical' CDS as seed sequences, then aligns the translated PCSs against up-/downstream-elongated CDS regions. More details can be found in the BAKTA [documentation](https://github.com/oschwengers/bakta). \n\n> Modifies tool parameter(s):\n> - BAKTA: `--skip-pseudo`",
"fa_icon": "fas fa-forward"
},
"annotation_bakta_skipsorf": {
"type": "boolean",
"description": "Skip sORF detection & annotation.",
"help_text": "Skip the prediction of sORFs from amino acids stretches as less than 30aa. For more info please refer to BAKTA [documentation](https://github.com/oschwengers/bakta). All sORF without gene symbols or product descriptions different from hypothetical will be discarded, while only those identified hits exhibiting proper gene symbols or product descriptions different from hypothetical will still be included in the final annotation.\n\n> Modifies tool parameter(s):\n> - BAKTA: `--skip-sorf`",
"fa_icon": "fas fa-forward"
},
"annotation_bakta_gap": {
"type": "boolean",
"description": "Activate gap detection & annotation.",
"help_text": "Activates any gene annotation found within contig assembly gaps. More details can be found in the BAKTA [documentation](https://github.com/oschwengers/bakta). \n\n> Modifies tool parameter(s):\n> - BAKTA: `--skip-gap`",
"fa_icon": "fas fa-forward"
},
"annotation_bakta_ori": {
"type": "boolean",
"description": "Activate oriC/oriT detection & annotation.",
"help_text": "Activates the BAKTA search for oriC/oriT genes by comparing results from Blast+ (generated by cov=0.8, id=0.8) and the [MOB-suite](https://github.com/phac-nml/mob-suite) of oriT & [DoriC](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323995/) oriC/oriV sequences. Annotations of ori regions take into account overlapping Blast+ hits and are conducted based on a majority vote heuristic. Region edges may be fuzzy. For more info please refer to the BAKTA [documentation](https://github.com/oschwengers/bakta).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--skip-ori`",
"fa_icon": "fas fa-forward"
},
"annotation_bakta_activate_plot": {
"type": "boolean",
"fa_icon": "fas fa-chart-pie",
"description": "Activate generation of circular genome plots.",
"help_text": "Activate this flag to generate genome plots (might be memory-intensive).\n\n> Modifies tool parameter(s):\n> - BAKTA: `--skip-plot`"
}
},
"fa_icon": "fas fa-file-signature"
},
"annotation_prokka": {
"title": "Annotation: Prokka",
"type": "object",
"description": "Prokka annotates genomic sequences belonging to bacterial, archaeal and viral genomes. More info: https://github.com/tseemann/prokka",
"default": "",
"properties": {
"annotation_prokka_singlemode": {
"type": "boolean",
"description": "Use the default genome-length optimised mode (rather than the metagenome mode).",
"help_text": "By default, Prokka's `--metagenome` mode is used in the pipeline to improve the gene prediction of highly fragmented metagenomes.\n\nBy specifying this parameter Prokka will instead use its default mode that is optimised for singular 'complete' genome sequences.\n\nFor more information, please check the Prokka [documentation](https://github.com/tseemann/prokka).\n\n> Modifies tool parameter(s):\n> - Prokka: `--metagenome`",
"fa_icon": "fas fa-braille"
},
"annotation_prokka_rawproduct": {
"type": "boolean",
"description": "Suppress the default clean-up of the gene annotations.",
"help_text": "By default, annotation in Prokka is carried out by alignment to other proteins in its database, or the databases the user provides via the tools `--proteins` flag. The resulting annotations are then cleaned up to standardise them to Genbank/ENA conventions.\n'Vague names' are set to 'hypothetical proteins', 'possible/probable/predicted' are set to 'putative' and 'EC/CPG and locus tag ids' are removed.\n\nBy supplying this flag you stop such clean up leaving the original annotation names.\n\nFor more information please check the Prokka [documentation](https://github.com/tseemann/prokka).\n\nThis flag suppresses this default behavior of Prokka (which is to perform the cleaning).\n\n> Modifies tool parameter(s):\n> - Prokka: `--rawproduct`",
"fa_icon": "fab fa-product-hunt"
},
"annotation_prokka_kingdom": {
"type": "string",
"default": "Bacteria",
"fa_icon": "fas fa-crown",
"description": "Specify the kingdom that the input represents.",
"help_text": "Specifies the kingdom that the input sample is derived from and/or you wish to screen for\n\n> \u26a0\ufe0f Prokka cannot annotate Eukaryotes.\n\nFor more information please check the Prokka [documentation](https://github.com/tseemann/prokka).\n\n> Modifies tool parameter(s):\n> - Prokka: `--kingdom`",
"enum": ["Archaea", "Bacteria", "Mitochondria", "Viruses"]
},
"annotation_prokka_gcode": {
"type": "integer",
"default": 11,
"minimum": 0,
"maximum": 25,
"description": "Specify the translation table used to annotate the sequences.",
"help_text": "Specify the translation table used to annotate the sequences. All possible genetic codes (1-25) used for gene annotation can be found [here](https://en.wikipedia.org/wiki/List_of_genetic_codes). This flag is required if the flag `--kingdom` is assigned.\n\nFor more information please check the Prokka [documentation](https://github.com/tseemann/prokka).\n\n> Modifies tool parameter(s):\n> - Prokka: `--gcode`",
"fa_icon": "fas fa-border-all"
},
"annotation_prokka_mincontiglen": {
"type": "integer",
"default": 1,
"description": "Minimum contig size required for annotation (bp).",
"help_text": "Specify the minimum contig lengths to carry out annotations on. The Prokka developers recommend that this should be \u2265 200 bp, if you plan to submit such annotations to NCBI.\n\nFor more information please check the Prokka [documentation](https://github.com/tseemann/prokka).\n\n> Modifies tool parameter(s):\n> - Prokka: `--mincontiglen`",
"fa_icon": "fas fa-ruler-horizontal"
},
"annotation_prokka_evalue": {
"type": "number",
"default": 1e-6,
"description": "E-value cut-off.",
"help_text": "Specifiy the maximum E-value used for filtering the alignment hits.\n\nFor more information please check the Prokka [documentation](https://github.com/tseemann/prokka).\n\n> Modifies tool parameter(s):\n> - Prokka: `--evalue`",
"fa_icon": "fas fa-sort-amount-down"
},
"annotation_prokka_coverage": {
"type": "integer",
"default": 80,
"description": "Set the assigned minimum coverage.",
"help_text": "Specify the minimum coverage percent of the annotated genome. This must be set between 0-100.\n\nFor more information please check the Prokka [documentation](https://github.com/tseemann/prokka).\n\n> Modifies tool parameter(s):\n> - Prokka: `--coverage`",
"fa_icon": "fas fa-align-right",
"minimum": 0,
"maximum": 100
},
"annotation_prokka_cdsrnaolap": {
"type": "boolean",
"description": "Allow transfer RNA (trRNA) to overlap coding sequences (CDS).",
"help_text": "Allow transfer RNA (trRNA) to overlap coding sequences (CDS). Transfer RNAs are short stretches of nucleotide sequences that link mRNA and the amino acid sequence of proteins. Their presence helps in the annotation of the sequences, because each trRNA can only be attached to one type of amino acid.\n\nFor more information please check the Prokka [documentation](https://github.com/tseemann/prokka).\n\n> Modifies tool parameter(s):\n> - Prokka: `--cdsrnaolap`",
"fa_icon": "fas fa-align-justify"
},
"annotation_prokka_rnammer": {
"type": "boolean",
"description": "Use RNAmmer for rRNA prediction.",
"help_text": "Activates [RNAmmer](https://services.healthtech.dtu.dk/service.php?RNAmmer-1.2) instead of the Prokka default [Barrnap](https://github.com/tseemann/barrnap) for rRNA prediction during the annotation process. RNAmmer classifies ribosomal RNA genes in genome sequences by using two levels of Hidden Markov Models. Barrnap uses the nhmmer tool that includes HMMER 3.1 for HMM searching in RNA:DNA style.\n\nFor more information please check the Prokka [documentation](https://github.com/tseemann/prokka).\n\n> Modifies tool parameter(s):\n> - Prokka: `--rnammer`",
"fa_icon": "fas fa-cogs"
},
"annotation_prokka_compliant": {
"type": "boolean",
"fa_icon": "far fa-check-circle",
"description": "Force contig name to Genbank/ENA/DDJB naming rules.",
"help_text": "Force the contig headers to conform to the Genbank/ENA/DDJB contig header standards. This is activated in combination with `--centre [X]` when contig headers supplied by the user are non-conforming and therefore need to be renamed before Prokka can start annotation. This flag activates `--genes --mincontiglen 200`. For more information please check the Prokka [documentation](https://github.com/tseemann/prokka). \n\n> Modifies tool parameter(s):\n> - Prokka: `--compliant`",
"default": true
},
"annotation_prokka_addgenes": {
"type": "boolean",
"fa_icon": "fas fa-dna",
"description": "Add the gene features for each CDS hit.",
"help_text": "For every CDS annotated, this flag adds the gene that encodes for that CDS region. For more information please check the Prokka [documentation](https://github.com/tseemann/prokka). \n\n> Modifies tool parameter(s):\n> - Prokka: `--addgenes`"
},
"annotation_prokka_retaincontigheaders": {
"type": "boolean",
"fa_icon": "fas fa-font",
"help_text": "This parameter allows prokka to retain the original contig names by activating `PROKKA`'s `--force` flag. If this parameter is set to `false` it activates `PROKKA`'s flags `--locus-tag PROKKA --centre CENTER` so the locus tags (contig names) will be PROKKA_# and the center tag will be CENTER. By default `PROKKA` changes contig headers to avoid errors that might rise due to long contig headers, so this must be turned on if the user has short contig names that should be retained by `PROKKA`. \n\n> Modifies tool parameter(s):\n> - Prokka: `--locus-tag PROKKA --centre CENTER`\n> - Prokka: `--force`",
"description": "Retains contig names."
}
},
"fa_icon": "fas fa-file-signature"
},
"annotation_prodigal": {
"title": "Annotation: Prodigal",
"type": "object",
"description": "Prodigal is a protein-coding gene prediction tool developed to run on bacterial and archaeal genomes. More info: https://github.com/hyattpd/prodigal/wiki",
"default": "",
"properties": {
"annotation_prodigal_singlemode": {
"type": "boolean",
"description": "Specify whether to use Prodigal's single-genome mode for long sequences.",
"help_text": "By default Prodigal runs in 'single genome' mode that requires sequence lengths to be equal or longer than 20000 characters.\n\nHowever, more fragmented reads from MAGs often result in contigs shorter than this. Therefore, nf-core/funcscan will run with the `meta` mode by default. Providing this parameter allows to override this and run in single genome mode again.\n\nFor more information check the Prodigal [documentation](https://github.com/hyattpd/prodigal/wiki).\n\n> Modifies tool parameter(s): \n> -PRODIGAL: `-p`",
"fa_icon": "far fa-circle"
},
"annotation_prodigal_closed": {
"type": "boolean",
"description": "Does not allow partial genes on contig edges.",
"help_text": "Suppresses partial genes from being on contig edge, resulting in closed ends. Should only be activated for genomes where it is sure the first and last bases of the sequence(s) do not fall inside a gene. Run together with `-p normal` (former `-p single`) .\n\nFor more information check the Prodigal [documentation](https://github.com/hyattpd/prodigal/wiki).\n\n> Modifies tool parameter(s):\n> - PRODIGAL: `-c`",
"fa_icon": "fas fa-arrows-alt-h"
},
"annotation_prodigal_transtable": {
"type": "integer",
"default": 11,
"description": "Specifies the translation table used for gene annotation.",
"help_text": "Specifies which translation table should be used for seqeunce annotation. All possible genetic code translation tables can be found [here](https://en.wikipedia.org/wiki/List_of_genetic_codes). The default is set at 11, which is used for standard Bacteria/Archeae.\n\nFor more information check the Prodigal [documentation](https://github.com/hyattpd/prodigal/wiki).\n\n> Modifies tool parameter(s):\n> - PRODIGAL: `-g`",
"fa_icon": "fas fa-border-all"
},
"annotation_prodigal_forcenonsd": {
"type": "boolean",
"description": "Forces Prodigal to scan for motifs.",
"help_text": "Forces PRODIGAL to a full scan for motifs rather than activating the Shine-Dalgarno RBS finder, the default scanner for PRODIGAL to train for motifs.\n\nFor more information check the Prodigal [documentation](https://github.com/hyattpd/prodigal/wiki).\n\n> Modifies tool parameter(s):\n> - PRODIGAL: `-n`",
"fa_icon": "fas fa-barcode"
}
},
"fa_icon": "fas fa-file-signature"
},
"annotation_pyrodigal": {
"title": "Annotation: Pyrodigal",
"type": "object",
"description": "Pyrodigal is a resource-optimized wrapper around Prodigal, producing protein-coding gene predictions of bacterial and archaeal genomes. Read more at the Pyrodigal GitHub repository (https://github.com/althonos/pyrodigal) or its documentation (https://pyrodigal.readthedocs.io).",
"default": "",
"properties": {
"annotation_pyrodigal_singlemode": {
"type": "boolean",
"fa_icon": "far fa-circle",
"description": "Specify whether to use Pyrodigal's single-genome mode for long sequences.",
"help_text": "By default Pyrodigal runs in 'single genome' mode that requires sequence lengths to be equal or longer than 20000 characters.\n\nHowever, more fragmented reads from MAGs often result in contigs shorter than this. Therefore, nf-core/funcscan will run with the `meta` mode by default, but providing this parameter allows to override this and run in single genome mode again.\n\nFor more information check the Pyrodigal [documentation](https://pyrodigal.readthedocs.io).\n\n> Modifies tool parameter(s): \n> - PYRODIGAL: `-p`"
},
"annotation_pyrodigal_closed": {
"type": "boolean",
"fa_icon": "fas fa-arrows-alt-h",
"description": "Does not allow partial genes on contig edges.",
"help_text": "Suppresses partial genes from being on contig edge, resulting in closed ends. Should only be activated for genomes where it is sure the first and last bases of the sequence(s) do not fall inside a gene. Run together with `-p single` .\n\nFor more information check the Pyrodigal [documentation](https://pyrodigal.readthedocs.io).\n\n> Modifies tool parameter(s):\n> - PYRODIGAL: `-c`"
},
"annotation_pyrodigal_transtable": {
"type": "integer",
"default": 11,
"fa_icon": "fas fa-border-all",
"description": "Specifies the translation table used for gene annotation.",
"help_text": "Specifies which translation table should be used for seqeunce annotation. All possible genetic code translation tables can be found [here](https://en.wikipedia.org/wiki/List_of_genetic_codes). The default is set at 11, which is used for standard Bacteria/Archeae.\n\nFor more information check the Pyrodigal [documentation](https://pyrodigal.readthedocs.io).\n\n> Modifies tool parameter(s):\n> - PYRODIGAL: `-g`"
},
"annotation_pyrodigal_forcenonsd": {
"type": "boolean",
"fa_icon": "fas fa-barcode",
"description": "Forces Pyrodigal to scan for motifs.",
"help_text": "Forces Pyrodigal to a full scan for motifs rather than activating the Shine-Dalgarno RBS finder, the default scanner for Pyrodigal to train for motifs.\n\nFor more information check the Pyrodigal [documentation](https://pyrodigal.readthedocs.io).\n\n> Modifies tool parameter(s):\n> - PYRODIGAL: `-n`"
}
},
"fa_icon": "fas fa-file-signature"
},
"database_downloading_options": {
"title": "Database downloading options",
"type": "object",
"description": "General options for database downloading",
"default": "",
"properties": {
"save_db": {
"type": "boolean",
"fa_icon": "fas fa-save",
"description": "Specify whether to save pipeline-downloaded databases in your results directory.",
"help_text": "While nf-core/funcscan can download databases for you, often these are very large and can significantly slow-down pipeline runtime if the databases have to be downloaded every run.\n\nSpecifying `--save_db` will save the pipeline-downloaded databases in your results directory. This applies to: AMRFinderPlus, antiSMASH, Bakta, CARD (for RGI), DeepARG, DeepBGC, and DRAMP (for AMPcombi2).\n\nYou can then move the resulting directories/files to a central cache directory of your choice for re-use in the future.\n\nIf you do not specify these flags, the database files will remain in your `work/` directory and will be deleted if `cleanup = true` is specified in your config, or if you run `nextflow clean`.\n"
}
},
"fa_icon": "fas fa-database"
},
"amp_amplify": {
"title": "AMP: AMPlify",
"type": "object",
"description": "Antimicrobial Peptide detection using a deep learning model. More info: https://github.com/bcgsc/AMPlify",
"default": "",
"properties": {
"amp_skip_amplify": {
"type": "boolean",
"description": "Skip AMPlify during AMP screening.",
"fa_icon": "fas fa-ban"
}
},
"fa_icon": "fa fa-plus-square"
},
"amp_ampir": {
"title": "AMP: ampir",
"type": "object",
"description": "Antimicrobial Peptide detection using machine learning. ampir uses a supervised statistical machine learning approach to predict AMPs. It incorporates two support vector machine classification models, 'precursor' and 'mature' that have been trained on publicly available antimicrobial peptide data. More info: https://github.com/Legana/ampir",
"default": "",
"properties": {
"amp_skip_ampir": {
"type": "boolean",
"description": "Skip ampir during AMP screening.",
"fa_icon": "fas fa-ban"
},
"amp_ampir_model": {
"type": "string",
"default": "precursor",
"description": "Specify which machine learning classification model to use.",
"help_text": "Ampir uses a supervised statistical machine learning approach to predict AMPs. It incorporates two support vector machine classification models, \"precursor\" and \"mature\". \n\nThe precursor module is better for predicted proteins from a translated transcriptome or translated gene models. The alternative model (mature) is best suited for AMP sequences after post-translational processing, typically from direct proteomic sequencing.\n\nMore information can be found in the ampir [documentation](https://ampir.marine-omics.net/).\n\n> Modifies tool parameter(s):\n> - AMPir: `model =`",
"enum": ["precursor", "mature"],
"fa_icon": "fas fa-layer-group"
},
"amp_ampir_minlength": {
"type": "integer",
"default": 10,
"description": "Specify minimum protein length for prediction calculation.",
"help_text": "Filters result for minimum protein length.\nNote that amino acid sequences that are shorter than 10 amino acids long and/or contain anything other than the standard 20 amino acids are not evaluated and will contain an NA as their \"prob_AMP value.\"\n\nMore information can be found in the ampir [documentation](https://ampir.marine-omics.net/).\n\n> Modifies tool parameter(s):\n> - AMPir parameter: `min_length` in the `calculate_features()` function",
"fa_icon": "fas fa-ruler-horizontal"
}
},
"fa_icon": "fa fa-plus-square"
},
"amp_hmmsearch": {
"title": "AMP: hmmsearch",
"type": "object",
"description": "Antimicrobial Peptide detection based on predefined HMM models. This tool implements methods using probabilistic models called profile hidden Markov models (profile HMMs) to search against a sequence database. More info: http://eddylab.org/software/hmmer/Userguide.pdf",
"default": "",
"properties": {
"amp_run_hmmsearch": {
"type": "boolean",
"description": "Run hmmsearch during AMP screening.",
"help_text": "hmmsearch is not run by default because HMM model files must be provided by the user with the flag `amp_hmmsearch_models`.",
"fa_icon": "fas fa-ban"
},
"amp_hmmsearch_models": {
"type": "string",
"description": "Specify path to the AMP hmm model file(s) to search against. Must have quotes if wildcard used.",
"help_text": "hmmsearch performs biosequence analysis using profile hidden Markov Models.\nThe models are specified in`.hmm` files that are specified with this parameter\n\ne.g. \n\n```\n--amp_hmmsearch_models '/<path>/<to>/<models>/*.hmm'\n```\n\nYou must wrap the path in quotes if you use a wildcard, to ensure Nextflow expansion _not_ bash! When using quotes, the absolute path to the HMM file(s) has to be given.\n\nFor more information check the HMMER [documentation](http://hmmer.org/).",
"fa_icon": "fas fa-layer-group"
},
"amp_hmmsearch_savealignments": {
"type": "boolean",
"help_text": "Save a multiple alignment of all significant hits (those satisfying inclusion thresholds) to a file\n\nFor more information check the HMMER [documentation](http://hmmer.org/).\n\n> Modifies tool parameter(s):\n> - hmmsearch: `-A`",
"description": "Saves a multiple alignment of all significant hits to a file.",
"fa_icon": "fas fa-save"
},
"amp_hmmsearch_savetargets": {
"type": "boolean",
"help_text": "Save a simple tabular (space-delimited) file summarizing the per-target output, with one data line per homologous target sequence found.\n\nFor more information check the HMMER [documentation](http://hmmer.org/).\n\n> Modifies tool parameter(s)\n> - hmmsearch: `--tblout`",
"description": "Save a simple tabular file summarising the per-target output.",
"fa_icon": "fas fa-save"
},
"amp_hmmsearch_savedomains": {
"type": "boolean",
"help_text": "Save a simple tabular (space-delimited) file summarizing the per-domain output, with one data line per homologous domain detected in a query sequence for each homologous model.\n\nFor more information check the HMMER [documentation](http://hmmer.org/).\n\n> Modifies tool parameter(s):\n> - hmmsearch: `--domtblout`",
"description": "Save a simple tabular file summarising the per-domain output.",
"fa_icon": "fas fa-save"
}
},
"fa_icon": "fa fa-plus-square",
"help_text": "HMMER/hmmsearch is used for searching sequence databases for sequence homologs, and for making sequence alignments. It implements methods using probabilistic models called profile hidden Markov models (profile HMMs). `hmmsearch` is used to search one or more profiles against a sequence database.\n\nFor more information check the HMMER [documentation](http://hmmer.org/).\n\n"
},
"amp_macrel": {
"title": "AMP: Macrel",
"type": "object",
"description": "Antimicrobial peptide detection from metagenomes. More info: https://github.com/BigDataBiology/macrel",
"default": "",
"properties": {
"amp_skip_macrel": {
"type": "boolean",
"description": "Skip Macrel during AMP screening.",
"fa_icon": "fas fa-ban"
}
},
"fa_icon": "fa fa-plus-square"
},
"amp_ampcombi2_parsetables": {
"title": "AMP: ampcombi2 parsetables",
"type": "object",
"description": "Antimicrobial peptides parsing, filtering, and annotating submodule of AMPcombi2. More info: https://github.com/Darcy220606/AMPcombi",
"default": "",
"properties": {
"amp_ampcombi_db": {
"type": "string",
"description": "Path to AMPcombi reference database directory (DRAMP).",
"help_text": "AMPcombi uses the 'general AMPs' dataset of the [DRAMP database](http://dramp.cpu-bioinfor.org/downloads/) for taxonomic classification. If you have a local version of it, you can provide the path to the directory(!) that contains the following reference database files:\n1. fasta file with `.fasta` file extension\n2. the corresponding table with with functional and taxonomic classifications in `.tsv` file extension.\n\nThe contents of the directory should have files such as `*.dmnd` and `*.fasta` in the top level.\n\nFor more information check the AMPcombi [documentation](https://github.com/Darcy220606/AMPcombi).",
"fa_icon": "fas fa-address-book"
},
"amp_ampcombi_parsetables_cutoff": {
"type": "number",
"default": 0.6,
"description": "Specifies the prediction tools' cut-offs.",
"help_text": "This converts any prediction score below this cut-off to '0'. By doing so only values above this value will be used in the final AMPcombi2 summary table. This applies to all prediction tools except for hmmsearch, which uses e-value. To change the e-value cut-off use instead `--amp_ampcombi_parsetables_hmmevalue`.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--amp_cutoff`",
"fa_icon": "fas fa-address-card"
},
"amp_ampcombi_parsetables_aalength": {
"type": "integer",
"default": 100,
"description": "Filter out all amino acid fragments shorter than this number.",
"help_text": "Any AMP hit that does not satisfy this length cut-off will be removed from the final AMPcombi2 summary table.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--aminoacid_length`",
"fa_icon": "fas fa-ruler-horizontal"
},
"amp_ampcombi_parsetables_dbevalue": {
"type": "number",
"default": 5.0,
"description": "Remove all DRAMP annotations that have an e-value greater than this value.",
"help_text": "This e-value is used as a cut-off for the annotations from the internal Diamond alignment step (against the DRAMP database by default). Any e-value below this value will only remove the DRAMP classification and not the entire hit.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--db_evalue`",
"fa_icon": "fas fa-sort-numeric-down"
},
"amp_ampcombi_parsetables_hmmevalue": {
"type": "number",
"default": 0.06,
"description": "Retain HMM hits that have an e-value lower than this.",
"help_text": "This converts any prediction score below this cut-off to '0'. By doing so only values above this value will be used in the final AMPcombi2 summary table. To change the prediction score cut-off for all other AMP prediction tools, use instead `--amp_cutoff`.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--hmm_evalue`",
"fa_icon": "fas fa-sort-numeric-up"
},
"amp_ampcombi_parsetables_windowstopcodon": {
"type": "integer",
"default": 60,
"description": "Assign the number of codons used to look for stop codons, upstream and downstream of the AMP hit.",
"help_text": "This assigns the length of the window size required to look for stop codons downstream and upstream of the CDS hits. In the default case, it looks 60 codons downstream and upstream of the AMP hit and reports whether a stop codon was found.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--window_size_stop_codon`",
"fa_icon": "fas fa-stop-circle"
},
"amp_ampcombi_parsetables_windowtransport": {
"type": "integer",
"default": 11,
"description": "Assign the number of CDSs upstream and downstream of the AMP to look for a transport protein.",
"help_text": "This assigns the length of the window size required to look for a 'transporter' (e.g. ABC transporter) downstream and upstream of the CDS hits. This is done on CDS classification level.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--window_size_transporter`",
"fa_icon": "fas fa-car-side"
},
"amp_ampcombi_parsetables_removehitswostopcodons": {
"type": "boolean",
"description": "Remove hits that have no stop codon upstream and downstream of the AMP.",
"help_text": "Removes any hits/CDSs that don't have a stop codon found in the window downstream or upstream of the CDS assigned by `--amp_ampcombi_parsetables_windowstopcodon`. We recommend to turn it on if the results will be used downstream experimentally.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--remove_stop_codons`",
"fa_icon": "fas fa-ban"
},
"amp_ampcombi_parsetables_ampir": {
"type": "string",
"default": ".ampir.tsv",
"description": "Assigns the file extension used to identify AMPIR output.",
"help_text": "Assigns the file extension of the input files to allow AMPcombi2 to identify the tool output from the list of input files.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--ampir_file`",
"fa_icon": "fas fa-address-card"
},
"amp_ampcombi_parsetables_amplify": {
"type": "string",
"default": ".amplify.tsv",
"description": "Assigns the file extension used to identify AMPLIFY output.",
"help_text": "Assigns the file extension of the input files to allow AMPcombi2 to identify the tool output from the list of input files.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--amplify_file`",
"fa_icon": "fas fa-address-card"
},
"amp_ampcombi_parsetables_macrel": {
"type": "string",
"default": ".macrel.prediction",
"description": "Assigns the file extension used to identify MACREL output.",
"help_text": "Assigns the file extension of the input files to allow AMPcombi2 to identify the tool output from the list of input files.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--macrel_file`",
"fa_icon": "fas fa-address-card"
},
"amp_ampcombi_parsetables_hmmsearch": {
"type": "string",
"default": ".hmmer_hmmsearch.txt",
"description": "Assigns the file extension used to identify HMMER/HMMSEARCH output.",
"help_text": "Assigns the file extension of the input files to allow AMPcombi2 to identify the tool output from the list of input files.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--hmmsearch_file`",
"fa_icon": "fas fa-address-card"
}
},
"fa_icon": "fa fa-plus-square"
},
"amp_ampcombi2_cluster": {
"title": "AMP: ampcombi2 cluster",
"type": "object",
"description": "Clusters the AMP candidates identified with AMPcombi. More info: https://github.com/Darcy220606/AMPcombi",
"default": "",
"properties": {
"amp_ampcombi_cluster_covmode": {
"type": "number",
"default": 0.0,
"description": "MMseqs2 coverage mode.",
"help_text": "This assigns the coverage mode to the MMseqs2 cluster module. This determines how AMPs are grouped into clusters. More details can be found in the [MMseqs2 documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--cluster_cov_mode`",
"fa_icon": "far fa-circle"
},
"amp_ampcombi_cluster_sensitivity": {
"type": "number",
"default": 4.0,
"description": "Remove hits that have no stop codon upstream and downstream of the AMP.",
"help_text": "This assigns the sensitivity of alignment to the MMseqs2 cluster module. This determines how AMPs are grouped into clusters. More information can be obtained in the [MMseqs2 documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--cluster_sensitivity`",
"fa_icon": "fas fa-arrows-alt-h"
},
"amp_ampcombi_cluster_minmembers": {
"type": "integer",
"default": 0,
"description": "Remove clusters that don't have more AMP hits than this number.",
"help_text": "Removes all clusters with this number of AMP hits and less.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--cluster_min_member`",
"fa_icon": "fas fa-book-dead"
},
"amp_ampcombi_cluster_mode": {
"type": "number",
"default": 1.0,
"description": "MMseqs2 clustering mode.",
"help_text": "This assigns the cluster mode to the MMseqs2 cluster module. This determines how AMPs are grouped into clusters. More information can be obtained in the [MMseqs2 documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--cluster_mode`",
"fa_icon": "fas fa-circle"
},
"amp_ampcombi_cluster_coverage": {
"type": "number",
"default": 0.8,
"description": "MMseqs2 alignment coverage.",
"help_text": "This assigns the coverage to the MMseqs2 cluster module. This determines how AMPs are grouped into clusters. More information can be obtained in[MMseqs2 documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--cluster_coverage`",
"fa_icon": "far fa-arrow-alt-circle-right"
},
"amp_ampcombi_cluster_seqid": {
"type": "number",
"default": 0.4,
"description": "MMseqs2 sequence identity.",
"help_text": "This assigns the cluster sequence identity to the MMseqs2 cluster module. This determines how AMPs are grouped into clusters. More information can be obtained in the [MMseqs2 documentation](https://mmseqs.com/latest/userguide.pdf).\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--cluster_seq_id`",
"fa_icon": "far fa-address-card"
},
"amp_ampcombi_cluster_removesingletons": {
"type": "boolean",
"description": "Remove any hits that form a single member cluster.",
"help_text": "Removes any AMP hits that form a single-member cluster.\n\n> Modifies tool parameter(s):\n> - AMPCOMBI: `--cluster_remove_singletons`",
"fa_icon": "fas fa-book-dead"
}
},
"fa_icon": "fa fa-plus-square"
},
"arg_amrfinderplus": {
"title": "ARG: AMRFinderPlus",
"type": "object",
"description": "Antimicrobial resistance gene detection based on NCBI's curated Reference Gene Database and curated collection of Hidden Markov Models. identifies AMR genes, resistance-associated point mutations, and select other classes of genes using protein annotations and/or assembled nucleotide sequences. More info: https://github.com/ncbi/amr/wiki",
"default": "",
"fa_icon": "fas fa-bacteria",
"properties": {
"arg_skip_amrfinderplus": {
"type": "boolean",
"description": "Skip AMRFinderPlus during the ARG screening.",
"fa_icon": "fas fa-ban"
},
"arg_amrfinderplus_db": {
"type": "string",
"fa_icon": "fas fa-layer-group",
"help_text": "Specify the path to a local version of the ARMFinderPlus database.\n\nYou must give the `latest` directory to the pipeline, and the contents of the directory should include files such as `*.nbd`, `*.nhr`, `versions.txt` etc. in the top level.\n\nIf no input is given, the pipeline will download the database for you.\n\n See the nf-core/funcscan usage [documentation](https://nf-co.re/funcscan/usage) for more information.\n\n> Modifies tool parameter(s):\n> - AMRFinderPlus: `--database`",
"description": "Specify the path to a local version of the ARMFinderPlus database."
},
"arg_amrfinderplus_identmin": {
"type": "number",
"default": -1.0,
"help_text": "Specify the minimum percentage amino-acid identity to reference protein or nucleotide identity for nucleotide reference must have if a BLAST alignment (based on methods: BLAST or PARTIAL) was detected, otherwise NA.\n\n If you specify `-1`, this means use a curated threshold if it exists and `0.9` otherwise.\n\nSetting this value to something other than `-1` will override any curated similarity cutoffs. For BLAST: alignment is > 90% of length and > 90% identity to a protein in the AMRFinderPlus database. For PARTIAL: alignment is > 50% of length, but < 90% of length and > 90% identity to the reference, and does not end at a contig boundary.\n\nFor more information check the AMRFinderPlus [documentation](https://github.com/ncbi/amr/wiki/Running-AMRFinderPlus#--organism-option).\n\n> Modifies tool parameter(s):\n> - AMRFinderPlus: `--ident_min`",
"description": "Minimum percent identity to reference sequence.",
"fa_icon": "fas fa-angle-left"
},
"arg_amrfinderplus_coveragemin": {
"type": "number",
"default": 0.5,
"description": "Minimum coverage of the reference protein.",
"help_text": "Minimum proportion of reference gene covered for a BLAST-based hit analysis if a BLAST alignment was detected, otherwise NA.\n\nFor BLAST-based hit analysis: alignment is > 90% of length and > 90% identity to a protein in the AMRFinderPlus database or for PARTIAL: alignment is > 50% of length, but < 90% of length and > 90% identity to the reference, and does not end at a contig boundary.\n\nFor more information check the AMRFinderPlus [documentation](https://github.com/ncbi/amr/wiki/Running-AMRFinderPlus#--organism-option).\n\n> Modifies tool parameter(s):\n> - AMRFinderPlus: `--coverage_min`",
"fa_icon": "fas fa-arrow-alt-circle-down",
"minimum": 0,
"maximum": 1
},
"arg_amrfinderplus_translationtable": {
"type": "integer",
"default": 11,
"description": "Specify which NCBI genetic code to use for translated BLAST.",
"help_text": "NCBI genetic code for translated BLAST. Number from 1 to 33 to represent the translation table used for BLASTX.\n\nSee [translation table](https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) for more details on which table to use. \n\nFor more information check the AMRFinderPlus [documentation](https://github.com/ncbi/amr/wiki/Running-AMRFinderPlus#--organism-option).\n\n> Modifies tool parameter(s):\n> - AMRFinderPlus: `--translation_table`",
"fa_icon": "fas fa-border-all",
"minimum": 1,
"maximum": 33
},
"arg_amrfinderplus_plus": {
"type": "boolean",
"description": "Add the plus genes to the report.",
"help_text": "Provide results from \"Plus\" genes in the output files.\n\nMostly the `plus` genes are an expanded set of genes that are of interest in pathogens. This set includes stress response (biocide, metal, and heat resistance), virulence factors, some antigens, and porins. These \"plus\" proteins have primarily been added to the database with curated BLAST cutoffs, and are generally identified by BLAST searches. Some of these may not be acquired genes or mutations, but may be intrinsic in some organisms. See [AMRFinderPlus database](https://github.com/ncbi/amr/wiki/AMRFinderPlus-database#types-of-proteins-covered) for more details.\n\n> Modifies tool parameter(s):\n> - AMRFinderPlus: `--plus`",
"fa_icon": "far fa-plus-square"
},
"arg_amrfinderplus_name": {
"type": "boolean",
"description": "Add identified column to AMRFinderPlus output.",
"help_text": "Prepend a column containing an identifier for this run of AMRFinderPlus. For example this can be used to add a sample name column to the AMRFinderPlus results. If set to `true`, the `--name <identifier>` is the sample name. \n\n> Modifies tool parameter(s):\n> - AMRFinderPlus: `--name`",
"fa_icon": "far fa-address-card"
}
}
},
"arg_deeparg": {
"title": "ARG: DeepARG",
"type": "object",
"description": "Antimicrobial resistance gene detection using a deep learning model. DeepARG is composed of two models for two types of input: short sequence reads and gene-like sequences. In this pipeline we use the `ls` model, which is suitable for annotating full sequence genes and to discover novel antibiotic resistance genes from assembled samples. The tool `Diamond` is used as an aligner. More info: https://bitbucket.org/gusphdproj/deeparg-ss/src/master",
"default": "",
"properties": {
"arg_skip_deeparg": {
"type": "boolean",
"description": "Skip DeepARG during the ARG screening.",
"fa_icon": "fas fa-ban"
},
"arg_deeparg_db": {
"type": "string",
"fa_icon": "fas fa-database",
"description": "Specify the path to the DeepARG database.",
"help_text": "Specify the path to a local version of the DeepARG database (see the pipelines' usage [documentation](https://nf-co.re/funcscan/dev/docs/usage#databases-and-reference-files)).\n\nThe contents of the directory should include directories such as `database`, `moderl`, and files such as `deeparg.gz` etc. in the top level.\n\nIf no input is given, the module will download the database for you, however this is not recommended, as the database is large and this will take time.\n\n> Modifies tool parameter(s):\n> - DeepARG: `--data-path`"
},
"arg_deeparg_db_version": {
"type": "integer",
"default": 2,
"description": "Specify the numeric version number of a user supplied DeepaRG database.",
"fa_icon": "fas fa-code-branch",
"help_text": "The DeepARG tool itself does not report explicitly the database version it uses. We assume the latest version (as downloaded by the tool's database download module), however if you supply a different database, you must supply the version with this parameter for use with the downstream hAMRonization tool.\n\nThe version number must be without any leading `v` etc."
},
"arg_deeparg_model": {
"type": "string",
"default": "LS",
"enum": ["LS", "SS"],
"description": "Specify which model to use (short or long sequences).",
"help_text": "Specify which model to use: short sequences for reads (`SS`), or long sequences for genes (`LS`). In the vast majority of cases we recommend using the `LS` model when using funcscan\n\nFor more information check the DeepARG [documentation](https://bitbucket.org/gusphdproj/deeparg-ss/src/master/deeparg/).\n\n> Modifies tool parameter(s):\n> - DeepARG: `--model`",
"fa_icon": "fas fa-layer-group"
},
"arg_deeparg_minprob": {
"type": "number",
"default": 0.8,
"description": "Specify minimum probability cutoff under which hits are discarded.",
"help_text": "Sets the minimum probability cutoff below which hits are discarded.\n\nFor more information check the DeepARG [documentation](https://bitbucket.org/gusphdproj/deeparg-ss/src/master/deeparg/).\n\n> Modifies tool parameter(s):\n> - DeepARG: `--min-prob`",
"fa_icon": "fas fa-dice"
},
"arg_deeparg_alignmentevalue": {
"type": "number",
"default": 1e-10,
"description": "Specify E-value cutoff under which hits are discarded.",
"help_text": "Sets the cutoff value for Evalue below which hits are discarded.\n\nFor more information check the DeepARG [documentation](https://bitbucket.org/gusphdproj/deeparg-ss/src/master/deeparg/).\n\n> Modifies tool parameter(s):\n> - DeepARG: `--arg-alignment-evalue`",
"fa_icon": "fas fa-align-center"
},
"arg_deeparg_alignmentidentity": {
"type": "integer",
"default": 50,
"description": "Specify percent identity cutoff for sequence alignment under which hits are discarded.",
"help_text": "Sets the value for Identity cutoff for sequence alignment.\n\nFor more information check the DeepARG [documentation](https://bitbucket.org/gusphdproj/deeparg-ss/src/master/deeparg/).\n\n> Modifies tool parameter(s):\n> - DeepARG: `--arg-alignment-identity`",
"fa_icon": "fas fa-align-center"
},
"arg_deeparg_alignmentoverlap": {
"type": "number",
"default": 0.8,
"description": "Specify alignment read overlap.",
"help_text": "Sets the value for the allowed alignment read overlap.\n\nFor more information check the DeepARG [documentation](https://bitbucket.org/gusphdproj/deeparg-ss/src/master/deeparg/).\n\n> Modifies tool parameter(s):\n> - DeepARG: `--arg-alignment-overlap`",
"fa_icon": "fas fa-align-center"
},
"arg_deeparg_numalignmentsperentry": {
"type": "integer",
"default": 1000,
"description": "Specify minimum number of alignments per entry for DIAMOND step of DeepARG.",
"help_text": "Sets the value of minimum number of alignments per entry for DIAMOND.\n\nFor more information check the DeepARG [documentation](https://bitbucket.org/gusphdproj/deeparg-ss/src/master/deeparg/).\n\n> Modifies tool parameter(s):\n> - DeepARG: `--arg-num-alignments-per-entry`",
"fa_icon": "far fa-gem"
}
},
"fa_icon": "fas fa-bacteria"
},
"arg_fargene": {
"title": "ARG: fARGene",
"type": "object",
"description": "Antimicrobial resistance gene detection using a deep learning model. The tool includes developed and optimised models for a number or resistance gene types, and the functionality to create and optimize models of your own choice of resistance genes. More info: https://github.com/fannyhb/fargene",
"default": "",
"properties": {
"arg_skip_fargene": {
"type": "boolean",
"description": "Skip fARGene during the ARG screening.",
"fa_icon": "fas fa-ban"
},
"arg_fargene_hmmmodel": {
"type": "string",
"default": "class_a,class_b_1_2,class_b_3,class_c,class_d_1,class_d_2,qnr,tet_efflux,tet_rpg,tet_enzyme",
"pattern": "^(class_a|class_b_1_2|class_b_3|class_c|class_d_1|class_d_2|qnr|tet_efflux|tet_rpg|tet_enzyme)(,(class_a|class_b_1_2|class_b_3|class_c|class_d_1|class_d_2|qnr|tet_efflux|tet_rpg|tet_enzyme))*$",
"description": "Specify comma-separated list of which pre-defined HMM models to screen against",
"help_text": "Specify via a comma separated list any of the hmm-models of the pre-defined models:\n- Class A beta-lactamases: `class_a`\n- Subclass B1 and B2 beta-lactamases: `class_b_1_2`\n- Subclass B3 beta-lactamases: `class_b_3`\n- Class C beta-lactamases: `class_c`\n- Class D beta-lactamases: `class_d_1`, `class_d_2`\n- qnr: `qnr`\n- Tetracycline resistance genes `tet_efflux`, `tet_rpg`, `tet_enzyme`\n\nFor more information check the fARGene [documentation](https://github.com/fannyhb/fargene).\n\n For example: `--arg_fargenemodel 'class_a,qnr,tet_enzyme'`\n\n>Modifies tool parameter(s):\n> - fARGene: `--hmm-model`",
"fa_icon": "fas fa-layer-group"
},
"arg_fargene_savetmpfiles": {
"type": "boolean",
"fa_icon": "fas fa-save",
"description": "Specify to save intermediate temporary files to results directory.",
"help_text": "fARGene generates many additional temporary files which in most cases won't be useful and thus by default are not saved to the pipeline's result directory.\n\nBy specifying this parameter, the directories `tmpdir/`, `hmmsearchresults/` and `spades_assemblies/` will be also saved in the output directory for closer inspection by the user, if necessary."
},
"arg_fargene_score": {
"type": "number",
"help_text": "The threshold score for a sequence to be classified as a (almost) complete gene. If not pre-assigned, it is assigned by the hmm_model used based on the trade-off between sensitivity and specificity.\n\nFor more details see code [documentation](https://github.com/fannyhb/fargene/blob/master/fargene_analysis/fargene_analysis.py).\n\n> Modifies tool parameter(s):\n> - fARGene: `--score`",
"description": "The threshold score for a sequence to be classified as a (almost) complete gene.",
"fa_icon": "fab fa-creative-commons-zero"
},
"arg_fargene_minorflength": {
"type": "integer",
"default": 90,
"help_text": "The minimum length of a predicted ORF retrieved from annotating the nucleotide sequences. By default the pipeline assigns this to 90% of the assigned hmm_model sequence length. \n\nFor more information check the fARGene [documentation](https://github.com/fannyhb/fargene).\n\n> Modifies tool parameter(s):\n> - fARGene: `--min-orf-length`",
"description": "The minimum length of a predicted ORF retrieved from annotating the nucleotide sequences.",
"fa_icon": "fas fa-ruler-horizontal",
"minimum": 1,
"maximum": 100
},
"arg_fargene_orffinder": {
"type": "boolean",
"description": "Defines which ORF finding algorithm to use.",
"help_text": "By default, pipeline uses prodigal/prokka for the prediction of ORFs from nucleotide sequences. Another option is the NCBI ORFfinder tool that is built into fARGene, the use of which is activated by this flag.\n\nFor more information check the fARGene [documentation](https://github.com/fannyhb/fargene).\n\n> Modifies tool parameter(s):\n> - fARGene: `--orf-finder`",
"fa_icon": "fas fa-project-diagram"
},
"arg_fargene_translationformat": {
"type": "string",
"default": "pearson",
"description": "The translation table/format to use for sequence annotation.",
"help_text": "The translation format that transeq should use for amino acid annotation from the nucleotide sequences. More sequence formats can be found in [transeq 'input sequence formats'](https://emboss.sourceforge.net/docs/themes/SequenceFormats.html).\n\nFor more information check the fARGene [documentation](https://github.com/fannyhb/fargene).\n\n> Modifies tool parameter(s):\n> - fARGene: `--translation-format`",
"fa_icon": "fas fa-border-none"
}
},
"fa_icon": "fas fa-bacteria"
},
"arg_rgi": {
"title": "ARG: RGI",
"type": "object",
"description": "Antimicrobial resistance gene detection, based on alignment to the CARD database based on homology and SNP models. More info: https://github.com/arpcard/rgi",
"default": "",
"properties": {
"arg_skip_rgi": {
"type": "boolean",
"description": "Skip RGI during the ARG screening.",
"fa_icon": "fas fa-ban"
},
"arg_rgi_db": {
"type": "string",
"description": "Path to user-defined local CARD database.",
"fa_icon": "fas fa-database",
"help_text": "You can pre-download the CARD database to your machine and pass the path of it to this parameter.\n\nThe contents of the directory should include files such as `card.json`, `aro_index.tsv`, `snps.txt` etc. in the top level.\n\nSee the pipeline [documentation](https://nf-co.re/funcscan/usage#rgi) for details on how to download this.\n\n> Modifies tool parameter(s):\n> - RGI_CARDANNOTATION: `--input`"
},
"arg_rgi_savejson": {
"type": "boolean",
"description": "Save RGI output .json file.",
"help_text": "When activated, this flag saves the `.json` file in the RGI output directory. The `.json` file contains the ARG predictions in a format that can be can be uploaded to the CARD website for visualization. See [RGI documentation](https://github.com/arpcard/rgi) for more details. By default, the `.json` file is generated in the working directory but not saved in the results directory to save disk space (`.json` file is quite large and not required downstream in the pipeline). ",
"fa_icon": "fas fa-save"
},
"arg_rgi_savetmpfiles": {
"type": "boolean",
"fa_icon": "fas fa-save",
"description": "Specify to save intermediate temporary files in the results directory.",
"help_text": "RGI generates many additional temporary files which in most cases won't be useful, thus are not saved by default.\n\nBy specifying this parameter, files including `temp` in their name will be also saved in the output directory for closer inspection by the user."
},
"arg_rgi_alignmenttool": {
"type": "string",
"default": "BLAST",
"description": "Specify the alignment tool to be used.",
"help_text": "Specifies the alignment tool to be used. By default RGI runs BLAST and this is also set as default in the nf-core/funcscan pipeline. With this flag the user can choose between BLAST and DIAMOND for the alignment step.\n\nFor more information check the RGI [documentation](https://github.com/arpcard/rgi).\n\n> Modifies tool parameter(s):\n> - RGI_MAIN: `--alignment_tool`",
"enum": ["BLAST", "DIAMOND"],
"fa_icon": "fas fa-align-justify"
},
"arg_rgi_includeloose": {
"type": "boolean",
"description": "Include all of loose, strict and perfect hits (i.e. \u2265 95% identity) found by RGI.",
"help_text": "When activated RGI output will include 'Loose' hits in addition to 'Strict' and 'Perfect' hits. The 'Loose' algorithm works outside of the detection model cut-offs to provide detection of new, emergent threats and more distant homologs of AMR genes, but will also catalog homologous sequences and spurious partial matches that may not have a role in AMR.\n\nFor more information check the RGI [documentation](https://github.com/arpcard/rgi).\n\n> Modifies tool parameter(s):\n> - RGI_MAIN: `--include_loose`",
"fa_icon": "far fa-hand-scissors"
},
"arg_rgi_includenudge": {
"type": "boolean",
"description": "Suppresses the default behaviour of RGI with `--arg_rgi_includeloose`.",
"help_text": "This flag suppresses the default behaviour of RGI, by listing all 'Loose' matches of \u2265 95% identity as 'Strict' or 'Perfect', regardless of alignment length.\n\nFor more information check the RGI [documentation](https://github.com/arpcard/rgi).\n\n> Modifies tool parameter(s):\n> - RGI_MAIN: `--include_nudge`",