Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

StreamReader.add_basic_video_stream drops last frame if frame_rate is specified #3809

Open
tyler-rt opened this issue Jul 11, 2024 · 0 comments

Comments

@tyler-rt
Copy link

🐛 Describe the bug

Using add_basic_video_stream causes the last frame of a video to be erroneously dropped.

first download example.mp4 (177KB).

import torio
def read_video(file_path, frame_rate=25):
    reader = torio.io.StreamingMediaDecoder(file_path)
    reader.add_basic_video_stream(
        frames_per_chunk=-1,
        buffer_chunk_size=-1,
        decoder_option={"threads": "1"},
        frame_rate=frame_rate,
    )

    video_chunks = []

    for chunks in reader.stream():
        video_chunk = chunks
        if video_chunk is not None:
            video_chunks.extend(video_chunk)

    video_data = None
    if len(video_chunks) > 0:
        video_data = torch.cat(video_chunks, dim=0)

    return video_data

mp4_path = voxceleb_subset.iloc[0].videopath
video0 = read_video(mp4_path, frame_rate=None)
video1 = read_video(mp4_path, frame_rate=25)
print(f"original num_frames: {video0.shape[0]}, with hardcode frame_rate: {video1.shape[0]}")
video0 = video0.permute(0,2,3,1)
video1 = video1.permute(0,2,3,1)
import matplotlib.pyplot as plt
fix, axes = plt.subplots(2, 2, figsize=(10, 5))
ax = axes.flatten()
ax[0].imshow(video0[0]-video1[0])
ax[0].set_title("first frame diff")
ax[1].imshow(video0[-1]-video1[-1])
ax[1].set_title("last frame diff")
ax[2].imshow(video0[-2]-video1[-1])
ax[2].set_title("diff of new video last frame to original second to last")
# turn off all ticks and labels
for a in ax:
    a.axis("off")
# plt.suptitle(f"StreamingMediaDecoder drops last frame when frame_rate is specified\n{mp4_path}")
plt.suptitle(f"StreamingMediaDecoder drops last frame when frame_rate is specified\nexample.mp4")
plt.tight_layout()

original num_frames: 121, with hardcode frame_rate: 120
image

We can verify that the frame rate of 25fps is correct from mediainfo

❯ mediainfo example.mp4 
General
Complete name                            : example.mp4
Format                                   : MPEG-4
Format profile                           : Base Media
Codec ID                                 : isom (isom/iso2/avc1/mp41)
File size                                : 177 KiB
Duration                                 : 4 s 904 ms
Overall bit rate mode                    : Variable
Overall bit rate                         : 296 kb/s
Frame rate                               : 25.000 FPS
Writing application                      : Lavf57.83.100

Video
ID                                       : 1
Format                                   : AVC
Format/Info                              : Advanced Video Codec
Format profile                           : [email protected]
Format settings                          : CABAC / 4 Ref Frames
Format settings, CABAC                   : Yes
Format settings, Reference frames        : 4 frames
Codec ID                                 : avc1
Codec ID/Info                            : Advanced Video Coding
Duration                                 : 4 s 840 ms
Bit rate                                 : 229 kb/s
Width                                    : 224 pixels
Height                                   : 224 pixels
Display aspect ratio                     : 1.000
Frame rate mode                          : Constant
Frame rate                               : 25.000 FPS
Color space                              : YUV
Chroma subsampling                       : 4:2:0
Bit depth                                : 8 bits
Scan type                                : Progressive
Bits/(Pixel*Frame)                       : 0.182
Stream size                              : 135 KiB (76%)
Writing library                          : x264 core 152 r2854 e9a5903
Encoding settings                        : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x113 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=7 / lookahead_threads=1 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=25 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=23.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00
Codec configuration box                  : avcC

Audio
ID                                       : 2
Format                                   : AAC LC
Format/Info                              : Advanced Audio Codec Low Complexity
Codec ID                                 : mp4a-40-2
Duration                                 : 4 s 904 ms
Duration_LastFrame                       : -24 ms
Bit rate mode                            : Variable
Bit rate                                 : 62.7 kb/s
Maximum bit rate                         : 69.0 kb/s
Channel(s)                               : 1 channel
Channel layout                           : M
Sampling rate                            : 16.0 kHz
Frame rate                               : 15.625 FPS (1024 SPF)
Compression mode                         : Lossy
Stream size                              : 37.6 KiB (21%)
Default                                  : Yes
Alternate group                          : 1

Versions

$ python collect_env.py
Collecting environment information...
PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.10.14 | packaged by conda-forge | (main, Mar 20 2024, 12:45:18) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-6.5.0-1022-aws-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.5.119
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A10G
GPU 1: NVIDIA A10G
GPU 2: NVIDIA A10G
GPU 3: NVIDIA A10G
GPU 4: NVIDIA A10G
GPU 5: NVIDIA A10G
GPU 6: NVIDIA A10G
GPU 7: NVIDIA A10G

Nvidia driver version: 550.90.07
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.2.4
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.2.4
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.2.4
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.2.4
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.2.4
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.2.4
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.2.4
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-191
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7R32
CPU family: 23
Model: 49
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
Stepping: 0
BogoMIPS: 5600.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 3 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 48 MiB (96 instances)
L3 cache: 384 MiB (24 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.2
[pip3] pytorch-lightning==2.2.1
[pip3] torch==2.3.1
[pip3] torchaudio==2.3.1
[pip3] torchmetrics==1.3.1
[pip3] torchvision==0.18.1
[pip3] triton==2.3.1
[conda] torch 2.3.1 pypi_0 pypi
[conda] torchaudio 2.3.1 pypi_0 pypi
[conda] torchvision 0.18.1 pypi_0 pypi
[conda] triton 2.3.1 pypi_0 pypi

@tyler-rt tyler-rt changed the title StreamingMediaDecoder drops last frame if frame_rate is specified StreamReader.add_basic_video_stream drops last frame if frame_rate is specified Jul 11, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant