forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_pytorch_jit_onnx.py
187 lines (164 loc) · 5.82 KB
/
test_pytorch_jit_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Owner(s): ["module: onnx"]
import onnxruntime
import pytorch_test_common
import torch
from pytorch_test_common import skipIfNoCuda
from torch.onnx import verification
from torch.onnx._globals import GLOBALS
from torch.testing._internal import common_utils
def _jit_graph_to_onnx_model(graph, operator_export_type, opset_version):
r"""
This function exports torch::jit::Graph object
to serialized ONNX ModelProto.
This function is for testing purpose.
It only keeps the essential parts for IR graph conversions.
It also does not interact with actual PyTorch modules nor
PyTorch tensor inputs.
"""
GLOBALS.export_onnx_opset_version = opset_version
graph = torch.onnx.utils._optimize_graph(
graph, operator_export_type, params_dict={}
)
proto, _, _, _ = graph._export_onnx(
{},
opset_version,
{},
False,
operator_export_type,
False,
False,
{},
True,
"",
{},
)
return proto
class _TestJITIRToONNX:
"""Abstract base class for test cases.
Intentionally not a sub-class of unittest.TestCase so that unittest / pytest
don't run it directly. unitest.TestCase is mixed in as another base class when
creating concrete sub-types. See MakeTestCase().
"""
opset_version = -1 # Sub-classes must override
ort_providers = ["CPUExecutionProvider"]
check_shape = True
check_dtype = True
ignore_none = True # True for tracing, and Flase for scripting
def run_test(self, graph_ir, example_inputs):
graph = torch._C.parse_ir(graph_ir)
jit_outs = torch._C._jit_interpret_graph(graph, example_inputs)
onnx_proto = _jit_graph_to_onnx_model(
graph, torch.onnx.OperatorExportTypes.ONNX, self.opset_version
)
ort_sess = onnxruntime.InferenceSession(
onnx_proto, providers=self.ort_providers
)
ort_outs = verification._run_onnx(ort_sess, example_inputs)
options = verification.VerificationOptions(
rtol=1e-3,
atol=1e-7,
check_shape=self.check_shape,
check_dtype=self.check_dtype,
ignore_none=self.ignore_none,
acceptable_error_percentage=None,
)
verification._compare_onnx_pytorch_outputs(
ort_outs,
jit_outs,
options,
)
def test_example_ir(self):
graph_ir = """
graph(%1 : Float(2, 3),
%2 : Float(2, 3)):
%3 : int = prim::Constant[value=1]()
%4 : Float(2, 3) = aten::add(%1, %2, %3)
return (%4)
"""
a = torch.randn(2, 3)
b = torch.randn(2, 3)
self.run_test(graph_ir, (a, b))
def test_add_sub_with_graph_inputs(self):
for op in ["add", "sub", "rsub"]:
graph_ir = f"""
graph(%1 : Float(2, 3),
%2 : Float(2, 3),
%3 : int):
%4 : Float(2, 3) = aten::{op}(%1, %2, %3)
return (%4)
"""
a = torch.randn(2, 3)
b = torch.randn(2, 3)
self.run_test(graph_ir, (a, b, 2))
def test_native_layer_norm(self):
graph_ir = """
graph(%x : Float(2, 3, 2),
%w : Float(3, 2),
%b : Float(3, 2)):
%5 : int = prim::Constant[value=3]()
%6 : int = prim::Constant[value=2]()
%7 : int[] = prim::ListConstruct(%5, %6)
%10 : float = prim::Constant[value=1.0000000000000001e-05]()
%11 : Float(2, 3, 2), %12 : Float(2, 1, 1), %13 : Float(2, 1, 1) = aten::native_layer_norm(%x, %7, %w, %b, %10)
return (%11, %12, %13)
"""
x = torch.randn(2, 3, 2)
w = torch.randn(3, 2)
b = torch.randn(3, 2)
self.run_test(graph_ir, (x, w, b))
def test_convolution(self):
graph_ir = """
graph(%1 : Tensor,
%2 : Tensor):
%3 : NoneType = prim::Constant()
%4 : int[] = prim::Constant[value=[1, 1]]()
%5 : int[] = prim::Constant[value=[0, 0]]()
%6 : bool = prim::Constant[value=0]()
%7 : int = prim::Constant[value=1]()
%8 : Tensor = aten::convolution(%1, %2, %3, %4, %5, %4, %6, %5, %7)
return (%8)
"""
x = torch.randn(8, 1, 5, 5)
w = torch.randn(4, 1, 3, 3)
self.run_test(graph_ir, (x, w))
def test_log_softmax(self):
graph_ir = """
graph(%x: Tensor):
%half_to_float: bool = prim::Constant[value=0]()
%dim: int = prim::Constant[value=1]()
%y = aten::_log_softmax(%x, %dim, %half_to_float)
return (%y)
"""
x = torch.randn(5, 2)
self.run_test(graph_ir, (x,))
@skipIfNoCuda
def test_log_softmax_half_to_float(self):
graph_ir = """
graph(%x: Tensor):
%half_to_float: bool = prim::Constant[value=1]()
%dim: int = prim::Constant[value=1]()
%y = aten::_log_softmax(%x, %dim, %half_to_float)
return (%y)
"""
x = torch.randn(5, 2).half().to("cuda")
self.run_test(graph_ir, (x,))
def test_native_dropout(self):
graph_ir = """
graph(%1 : Float(2, 3)):
%2 : float = prim::Constant[value=0.0]()
%training : bool = prim::Constant[value=1]()
%3 : Tensor, %4 : Tensor = aten::native_dropout(%1, %2, %training)
return (%3, %4)
"""
a = torch.randn(2, 3)
self.run_test(graph_ir, (a,))
def MakeTestCase(opset_version: int) -> type:
name = f"TestJITIRToONNX_opset{opset_version}"
return type(
str(name),
(pytorch_test_common.ExportTestCase,),
dict(_TestJITIRToONNX.__dict__, opset_version=opset_version),
)
TestJITIRToONNX_opset14 = MakeTestCase(14)
if __name__ == "__main__":
common_utils.run_tests()