
Parallel Simulations

In the current agent based model, the agents update their infection status and perform
movements according to their daily routine in a sequential manner. Both of these operations
utilize the simulation’s read buffer to calculate required values that are based on the agent’s
neighborhood. The result of the movement of each agent is reflected in the write buffer. Thus,
this procedure requires each agent to perform read operations on the read buffer and write
operations on the write buffer. At the end of each time step, the buffers are swapped.

We modify this procedure to allow for agent’s to perform their operations parallely. There are no
dependencies between agents and the order of execution does not matter. Hence a
data-parallel approach can be implemented in which each thread executes a single agent’s
operations and calculates its updates simultaneously.

Since the buffers are maps (mapping locations to agents), updating them requires collisions to
be handled. In a serial implementation, this is straightforward - if a location is already occupied
by an agent due to an update in some previous iteration, then the current agent remains at its
original location. In a parallel implementation, handling collisions and collecting the results can
be done via two methods:

M1: Concurrent data structures with double buffering:
In this approach the buffers are concurrent data structures which allow multiple threads to share
the buffer and write to it. Hence, for each agent, each thread can write the agent’s updates to
the write buffer concurrently.

In Rust, we use DashMap for this purpose. DashMap allows easy collision handling by allowing
the following two steps to be done atomically: check if the entry at a certain key is empty and if
empty, insert the given value.

The efficiency of this method depends on the efficiency of reads and writes in the concurrent
data structure. In DashMap, we found that the time saved by writing updates in parallel was
overshadowed by the excess time introduced in reading from a DashMap. This is due to the
sharding nature of the data structure that enables concurrent writes, but makes simple reads
slow.

M2: Concurrent data structures with double buffering, with “read only view” for read
operations:

To overcome the problem of excess time in reading from a DashMap, we maintain a “read only
view” of the map, which acts as a regular non-concurrent map. All read operations are
performed on this map instead. However, now there is the added cost of updating the “read only
view” at each step of the simulation.



M3: Map-reduce approach:
In this approach, we collect the updates calculated in parallel by each agent in a temporary data
structure. Then the updates are iterated over serially and reflected in the write buffer. Collisions
are handled one by one in sequential order, the same as in serial implementation.

This method allows us to use regular data structures without compromising on read operation
speeds however, the agent loop is not parallelized completely.
⁄
We observe that reflecting the updates in serial is faster than using concurrent data structures in
Rust.

Table: iterations/sec measured for 1 million agents, averaged over 5 simulations.
Values stored in : (sheet: benchmarks)epirust_timing

Method Serial Parallel (8
cores)

Parallel (32
cores)

Parallel (64
cores)

M1 1.17723942 2.68863944 4.85818212 5.18984214

M2 1.1334596 4.2243108 4.23892338

M3 1.82072374 3.96251958 4.68030536 4.77848274

Observations:
Using a concurrent data structure like DashMap is beneficial when running parallel code at
higher number of cores, however the serial code using this method performs poorly compared
to using a map-reduce approach.
Note to self: how to mention the additional meta data about agent that needs to be updated in
data structures (such as “listeners”) which are not concurrent.

https://docs.google.com/spreadsheets/d/17wIDo7C7W2oS79jspZDOCGKRBKhA52_Yr4XIqpc5L5o/edit?usp=sharing

