-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
109 lines (100 loc) · 6.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from ultralytics import YOLO
import torch
import numpy as np
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt
import cv2
model = YOLO("model/yolov8m-football.pt")
# response = requests.get("test.jpg")
# image = Image.open(BytesIO(response.content))
image = np.asarray(cv2.imread("4.png"))
results = model.predict(image)
# result_img = cv2.imread(results)
#
# cv2.imshow("Image", result_img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
def box_label(image, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
lw = max(round(sum(image.shape) / 2 * 0.003), 2)
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
cv2.rectangle(image, p1, p2, color, thickness=lw, lineType=cv2.LINE_AA)
if label:
tf = max(lw - 1, 1) # font thickness
w, h = cv2.getTextSize(label, 0, fontScale=lw / 3, thickness=tf)[0] # text width, height
outside = p1[1] - h >= 3
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
cv2.rectangle(image, p1, p2, color, -1, cv2.LINE_AA) # filled
cv2.putText(image,
label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
0,
lw / 3,
txt_color,
thickness=tf,
lineType=cv2.LINE_AA)
def plot_bboxes(image, boxes, labels=[], colors=[], score=True, conf=None):
# Define COCO Labels
if labels == []:
labels = {0: u'__background__', 1: u'football', 2: u'bicycle', 3: u'person', 4: u'motorcycle', 5: u'airplane',
6: u'bus', 7: u'train', 8: u'truck', 9: u'boat', 10: u'traffic light', 11: u'fire hydrant',
12: u'stop sign', 13: u'parking meter', 14: u'bench', 15: u'bird', 16: u'cat', 17: u'dog',
18: u'horse', 19: u'sheep', 20: u'cow', 21: u'elephant', 22: u'bear', 23: u'zebra', 24: u'giraffe',
25: u'backpack', 26: u'umbrella', 27: u'handbag', 28: u'tie', 29: u'suitcase', 30: u'frisbee',
31: u'skis', 32: u'snowboard', 33: u'sports ball', 34: u'kite', 35: u'baseball bat',
36: u'baseball glove', 37: u'skateboard', 38: u'surfboard', 39: u'tennis racket', 40: u'bottle',
41: u'wine glass', 42: u'cup', 43: u'fork', 44: u'knife', 45: u'spoon', 46: u'bowl', 47: u'banana',
48: u'apple', 49: u'sandwich', 50: u'orange', 51: u'broccoli', 52: u'carrot', 53: u'hot dog',
54: u'pizza', 55: u'donut', 56: u'cake', 57: u'chair', 58: u'couch', 59: u'potted plant', 60: u'bed',
61: u'dining table', 62: u'toilet', 63: u'tv', 64: u'laptop', 65: u'mouse', 66: u'remote',
67: u'keyboard', 68: u'cell phone', 69: u'microwave', 70: u'oven', 71: u'toaster', 72: u'sink',
73: u'refrigerator', 74: u'book', 75: u'clock', 76: u'vase', 77: u'scissors', 78: u'teddy bear',
79: u'hair drier', 80: u'toothbrush'}
# Define colors
if colors == []:
# colors = [(6, 112, 83), (253, 246, 160), (40, 132, 70), (205, 97, 162), (149, 196, 30), (106, 19, 161), (127, 175, 225), (115, 133, 176), (83, 156, 8), (182, 29, 77), (180, 11, 251), (31, 12, 123), (23, 6, 115), (167, 34, 31), (176, 216, 69), (110, 229, 222), (72, 183, 159), (90, 168, 209), (195, 4, 209), (135, 236, 21), (62, 209, 199), (87, 1, 70), (75, 40, 168), (121, 90, 126), (11, 86, 86), (40, 218, 53), (234, 76, 20), (129, 174, 192), (13, 18, 254), (45, 183, 149), (77, 234, 120), (182, 83, 207), (172, 138, 252), (201, 7, 159), (147, 240, 17), (134, 19, 233), (202, 61, 206), (177, 253, 26), (10, 139, 17), (130, 148, 106), (174, 197, 128), (106, 59, 168), (124, 180, 83), (78, 169, 4), (26, 79, 176), (185, 149, 150), (165, 253, 206), (220, 87, 0), (72, 22, 226), (64, 174, 4), (245, 131, 96), (35, 217, 142), (89, 86, 32), (80, 56, 196), (222, 136, 159), (145, 6, 219), (143, 132, 162), (175, 97, 221), (72, 3, 79), (196, 184, 237), (18, 210, 116), (8, 185, 81), (99, 181, 254), (9, 127, 123), (140, 94, 215), (39, 229, 121), (230, 51, 96), (84, 225, 33), (218, 202, 139), (129, 223, 182), (167, 46, 157), (15, 252, 5), (128, 103, 203), (197, 223, 199), (19, 238, 181), (64, 142, 167), (12, 203, 242), (69, 21, 41), (177, 184, 2), (35, 97, 56), (241, 22, 161)]
colors = [(89, 161, 197), (67, 161, 255), (19, 222, 24), (186, 55, 2), (167, 146, 11), (190, 76, 98),
(130, 172, 179), (115, 209, 128), (204, 79, 135), (136, 126, 185), (209, 213, 45), (44, 52, 10),
(101, 158, 121), (179, 124, 12), (25, 33, 189), (45, 115, 11), (73, 197, 184), (62, 225, 221),
(32, 46, 52), (20, 165, 16), (54, 15, 57), (12, 150, 9), (10, 46, 99), (94, 89, 46), (48, 37, 106),
(42, 10, 96), (7, 164, 128), (98, 213, 120), (40, 5, 219), (54, 25, 150), (251, 74, 172),
(0, 236, 196), (21, 104, 190), (226, 74, 232), (120, 67, 25), (191, 106, 197), (8, 15, 134),
(21, 2, 1), (142, 63, 109), (133, 148, 146), (187, 77, 253), (155, 22, 122), (218, 130, 77),
(164, 102, 79), (43, 152, 125), (185, 124, 151), (95, 159, 238), (128, 89, 85), (228, 6, 60),
(6, 41, 210), (11, 1, 133), (30, 96, 58), (230, 136, 109), (126, 45, 174), (164, 63, 165),
(32, 111, 29), (232, 40, 70), (55, 31, 198), (148, 211, 129), (10, 186, 211), (181, 201, 94),
(55, 35, 92), (129, 140, 233), (70, 250, 116), (61, 209, 152), (216, 21, 138), (100, 0, 176),
(3, 42, 70), (151, 13, 44), (216, 102, 88), (125, 216, 93), (171, 236, 47), (253, 127, 103),
(205, 137, 244), (193, 137, 224), (36, 152, 214), (17, 50, 238), (154, 165, 67), (114, 129, 60),
(119, 24, 48), (73, 8, 110)]
# plot each boxes
for box in boxes:
# add score in label if score=True
if score:
label = labels[int(box[-1]) + 1] + " " + str(round(100 * float(box[-2]), 1)) + "%"
else:
label = labels[int(box[-1]) + 1]
# filter every box under conf threshold if conf threshold setted
if conf:
if box[-2] > conf:
if label == 'football':
color = colors[int(box[-1])]
box_label(image, box, label, color)
else:
if label == 'football':
color = colors[int(box[-1])]
box_label(image, box, label, color)
try:
import google.colab
IN_COLAB = True
except:
IN_COLAB = False
if IN_COLAB:
# cv2_imshow(image) # if used in Colab
pass
else:
plt.figure(figsize=(20, 10))
plt.imshow(image)
plt.show()
cv2.imwrite("predicted_image.jpg", image)
plot_bboxes(image, results[0].boxes.data, score = False)