English | 简体中文
MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 OpenMMLab 项目的一部分。
主分支代码目前支持 PyTorch 1.5 以上的版本。
主要特性
-
模块化设计
MMDetection 将检测框架解耦成不同的模块组件,通过组合不同的模块组件,用户可以便捷地构建自定义的检测模型
-
丰富的即插即用的算法和模型
MMDetection 支持了众多主流的和最新的检测算法,例如 Faster R-CNN,Mask R-CNN,RetinaNet 等。
-
速度快
基本的框和 mask 操作都实现了 GPU 版本,训练速度比其他代码库更快或者相当,包括 Detectron2, maskrcnn-benchmark 和 SimpleDet。
-
性能高
MMDetection 这个算法库源自于 COCO 2018 目标检测竞赛的冠军团队 MMDet 团队开发的代码,我们在之后持续进行了改进和提升。
除了 MMDetection 之外,我们还开源了计算机视觉基础库 MMCV,MMCV 是 MMDetection 的主要依赖。
最新的 2.26.0 版本已经在 2022.11.23 发布:
- 支持在 NPU 上进行训练。
如果想了解更多版本更新细节和历史信息,请阅读更新日志。
如果想了解 MMDetection 不同版本之间的兼容性, 请参考兼容性说明文档。
全新的 v3.0.0rc0 版本已经在 2022.8.31 发布:
- 基于 MMEngine 统一了各组件接口。
- 全面支持混合精度,训练测试速度更快。
- 提供了更强的基线模型,并支持了通用的半监督目标检测框架,详见半监督目标检测教程。
- 支持使用任意单阶段检测器作为二阶段模型的 RPN,详见教程。
请参考安装指令进行安装。
请参考快速入门文档学习 MMDetection 的基本使用。 我们提供了 检测的 colab 教程 和 实例分割的 colab 教程,也为新手提供了完整的运行教程,其他教程如下
- 使用已有模型在标准数据集上进行推理
- 在自定义数据集上进行训练
- 在标准数据集上训练自定义模型
- 学习配置文件
- 自定义数据集
- 自定义数据预处理流程
- 自定义模型
- 自定义训练配置
- 自定义损失函数
- 模型微调
- Pytorch 到 ONNX 的模型转换
- ONNX 到 TensorRT 的模型转换
- 权重初始化
- how to xxx
同时,我们还提供了 MMDetection 中文解读文案汇总
测试结果和模型可以在模型库中找到。
Backbones | Necks | Loss | Common |
|
我们在基于 MMDetection 的项目中列举了一些其他的支持的算法。
请参考 FAQ 了解其他用户的常见问题。
我们感谢所有的贡献者为改进和提升 MMDetection 所作出的努力。我们将正在进行中的项目添加进了GitHub Projects页面,非常欢迎社区用户能参与进这些项目中来。请参考贡献指南来了解参与项目贡献的相关指引。
MMDetection 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。 我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型,从而不断为开源社区提供贡献。
如果你在研究中使用了本项目的代码或者性能基准,请参考如下 bibtex 引用 MMDetection。
@article{mmdetection,
title = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
author = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
journal= {arXiv preprint arXiv:1906.07155},
year={2019}
}
该项目采用 Apache 2.0 开源许可证。
- MMEngine: OpenMMLab 深度学习模型训练基础库
- MMCV: OpenMMLab 计算机视觉基础库
- MMEval: 统一开放的跨框架算法评测库
- MIM: MIM 是 OpenMMlab 项目、算法、模型的统一入口
- MMClassification: OpenMMLab 图像分类工具箱
- MMDetection: OpenMMLab 目标检测工具箱
- MMDetection3D: OpenMMLab 新一代通用 3D 目标检测平台
- MMRotate: OpenMMLab 旋转框检测工具箱与测试基准
- MMSegmentation: OpenMMLab 语义分割工具箱
- MMOCR: OpenMMLab 全流程文字检测识别理解工具包
- MMPose: OpenMMLab 姿态估计工具箱
- MMHuman3D: OpenMMLab 人体参数化模型工具箱与测试基准
- MMSelfSup: OpenMMLab 自监督学习工具箱与测试基准
- MMRazor: OpenMMLab 模型压缩工具箱与测试基准
- MMFewShot: OpenMMLab 少样本学习工具箱与测试基准
- MMAction2: OpenMMLab 新一代视频理解工具箱
- MMTracking: OpenMMLab 一体化视频目标感知平台
- MMFlow: OpenMMLab 光流估计工具箱与测试基准
- MMEditing: OpenMMLab 图像视频编辑工具箱
- MMGeneration: OpenMMLab 图片视频生成模型工具箱
- MMDeploy: OpenMMLab 模型部署框架
扫描下方的二维码可关注 OpenMMLab 团队的 知乎官方账号,加入 OpenMMLab 团队的官方交流 QQ 群
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬