-
Notifications
You must be signed in to change notification settings - Fork 4
/
config.py
48 lines (36 loc) · 998 Bytes
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
debug = True
image_path = ""
captions_path = ""
dataset_root = "/data/comps"
train_json = "/data/comps/train.json"
val_json = "/data/comps/val.json"
batch_size = 200
num_workers = 5
head_lr = 1e-3
image_encoder_lr = 1e-4
text_encoder_lr = 1e-5
weight_decay = 1e-3
patience = 2
factor = 0.8
epochs = 350
gpu = 1
device = torch.device(f"cuda:{gpu}" if torch.cuda.is_available() else "cpu")
# model_name = 'efficientnet_b2'
# image_embedding = 1408
model_name = 'resnet50'
image_embedding = 1000
text_encoder_model = "neuralspace-reverie/indic-transformers-bn-bert"
text_tokenizer = "neuralspace-reverie/indic-transformers-bn-bert"
max_length = 100
model_tag = f"{model_name}_{text_encoder_model.replace('/', '_')}_aug"
log_tag = model_tag
pretrained = True # for both image encoder and text encoder
trainable = True # for both image encoder and text encoder
temperature = 1.0
# image size
size = 224
# proj. head
num_projection_layers = 1
projection_dim = 256
dropout = 0.1