-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppg_training_mimic_iii.py
264 lines (223 loc) · 10.8 KB
/
ppg_training_mimic_iii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
""" train neural architectures using PPG data
This script trains a neural network using PPG data. The data is loaded from the the .tfrecord files created by the script
'hdf_to_tfrecord.py'. Four different neural architectures can be selected:
- AlexNet [1]
- ResNet [2]
- Architecture published by Slapnicar et al. (modified to work with Tensorflow 2.4.1) [3] The original code can be downloaded
from https://github.com/gslapnicar/bp-estimation-mimic3
- LSTM network
A checkpoint callback is used to store the best network weights in terms of validation loss. These weights are subsequently
used to perform predictions on the test set. Test results are stored in a csv file for later evaluation.
References
[1] A. Krizhevsky, I. Sutskever, und G. E. Hinton, „ImageNet classification with deep convolutional neural networks“,
Commun. ACM, Bd. 60, Nr. 6, S. 84–90, Mai 2017, doi: 10.1145/3065386.
[2] K. He, X. Zhang, S. Ren, und J. Sun, „Deep Residual Learning for Image Recognition“, in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, Juni 2016, S. 770–778. doi: 10.1109/CVPR.2016.90.
[3] G. Slapničar, N. Mlakar, und M. Luštrek, „Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal
Deep Neural Network“, Sensors, Bd. 19, Nr. 15, S. 3420, Aug. 2019, doi: 10.3390/s19153420.
File: prepare_MIMIC_dataset.py
Author: Dr.-Ing. Fabian Schrumpf
E-Mail: [email protected]
Date created: 8/9/2021
Date last modified: 8/9/2021
"""
from os.path import expanduser, join
from os import environ
from sys import argv
from functools import partial
from datetime import datetime
import argparse
import tensorflow as tf
import pandas as pd
import numpy as np
gpu_devices = tf.config.experimental.list_physical_devices("GPU")
for device in gpu_devices:
tf.config.experimental.set_memory_growth(device, True)
from models.define_ResNet_1D import ResNet50_1D
from models.define_AlexNet_1D import AlexNet_1D
from models.define_LSTM import define_LSTM
from models.slapnicar_model import raw_signals_deep_ResNet
def read_tfrecord(example, win_len=875):
tfrecord_format = (
{
'ppg': tf.io.FixedLenFeature([win_len], tf.float32),
'label': tf.io.FixedLenFeature([2], tf.float32)
}
)
parsed_features = tf.io.parse_single_example(example, tfrecord_format)
return parsed_features['ppg'], (parsed_features['label'][0], parsed_features['label'][1])
def create_dataset(tfrecords_dir, tfrecord_basename, win_len=875, batch_size=32, modus='train'):
pattern = join(tfrecords_dir, modus, tfrecord_basename + "_" + modus + "_?????_of_?????.tfrecord")
dataset = tf.data.TFRecordDataset.list_files(pattern)
if modus == 'train':
dataset = dataset.shuffle(1000, reshuffle_each_iteration=True)
dataset = dataset.interleave(
tf.data.TFRecordDataset,
cycle_length=800,
block_length=400)
else:
dataset = dataset.interleave(
tf.data.TFRecordDataset)
dataset = dataset.map(partial(read_tfrecord, win_len=win_len), num_parallel_calls=2)
dataset = dataset.shuffle(4096, reshuffle_each_iteration=True)
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=False)
dataset = dataset.repeat()
return dataset
def get_model(architecture, input_shape, UseDerivative=False):
return {
'resnet': ResNet50_1D(input_shape, UseDerivative=UseDerivative),
'alexnet': AlexNet_1D(input_shape, UseDerivative=UseDerivative),
'slapnicar' : raw_signals_deep_ResNet(input_shape, UseDerivative=UseDerivative),
'lstm' : define_LSTM(input_shape)
}[architecture]
def ppg_train_mimic_iii(architecture,
DataDir,
ResultsDir,
CheckpointDir,
tensorboard_tag,
tfrecord_basename,
experiment_name,
win_len=875,
batch_size=32,
lr = None,
N_epochs = 20,
Ntrain=1e6,
Nval=2.5e5,
Ntest=2.5e5,
UseDerivative=False,
earlystopping=True):
# create datasets for training, validation and testing using .tfrecord files
test_dataset = create_dataset(DataDir, tfrecord_basename, win_len=win_len, batch_size=batch_size,
modus='test')
train_dataset = create_dataset(DataDir, tfrecord_basename, win_len=win_len, batch_size=batch_size, modus='train')
val_dataset = create_dataset(DataDir, tfrecord_basename, win_len=win_len, batch_size=batch_size,
modus='val')
data_in_shape = (win_len,1)
# load the neurarchitecture
model = get_model(architecture, data_in_shape, UseDerivative=UseDerivative)
print(model.summary())
# callback for logging training and validation results
csvLogger_cb = tf.keras.callbacks.CSVLogger(
filename=join(ResultsDir,experiment_name + '_learningcurve.csv')
)
# checkpoint callback
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(
filepath=join(CheckpointDir , experiment_name + '_cb.h5'),
save_best_only=True
)
# tensorboard callback
tensorbard_cb = tf.keras.callbacks.TensorBoard(
log_dir=join(ResultsDir, 'tb', tensorboard_tag),
histogram_freq=0,
write_graph=False
)
# callback for early stopping if validation loss stops improving
EarlyStopping_cb = tf.keras.callbacks.EarlyStopping(
monitor='val_loss',
patience=10,
restore_best_weights=True
)
# define Adam optimizer
if lr is None:
opt = tf.keras.optimizers.Adam()
else:
opt = tf.keras.optimizers.Adam(learning_rate=lr)
# compile model using mean squared error as loss function
model.compile(
optimizer=opt,
loss = tf.keras.losses.mean_squared_error,
metrics = [['mae'], ['mae']]
)
cb_list = [checkpoint_cb,
tensorbard_cb,
csvLogger_cb,
EarlyStopping_cb if earlystopping == True else []]
# Perform Training and Validation
history = model.fit(
train_dataset,
steps_per_epoch=Ntrain//batch_size,
epochs=N_epochs,
validation_data=val_dataset,
validation_steps=Nval//batch_size,
callbacks=cb_list
)
# Predictions on the testset
model.load_weights(checkpoint_cb.filepath)
test_results = pd.DataFrame({'SBP_true' : [],
'DBP_true' : [],
'SBP_est' : [],
'DBP_est' : []})
# store predictions on the test set as well as the corresponding ground truth in a csv file
test_dataset = iter(test_dataset)
for i in range(int(Ntest//batch_size)):
ppg_test, BP_true = test_dataset.next()
BP_est = model.predict(ppg_test)
TestBatchResult = pd.DataFrame({'SBP_true' : BP_true[0].numpy(),
'DBP_true' : BP_true[1].numpy(),
'SBP_est' : np.squeeze(BP_est[0]),
'DBP_est' : np.squeeze(BP_est[1])})
test_results = test_results.append(TestBatchResult)
ResultsFile = join(ResultsDir,experiment_name + '_test_results.csv')
test_results.to_csv(ResultsFile)
idx_min = np.argmin(history.history['val_loss'])
print(' Training finished')
return history.history['SBP_mae'][idx_min], history.history['DBP_mae'][idx_min], history.history['val_SBP_mae'][idx_min], history.history['val_DBP_mae'][idx_min]
if __name__ == "__main__":
if len(argv) > 1:
parser = argparse.ArgumentParser()
parser.add_argument('ExpName', type=str, help="unique name for the training")
parser.add_argument('datadir', type=str,
help="folder containing the train, val and test subfolders containing tfrecord files")
parser.add_argument('resultsdir', type=str, help="Directory in which results are stored")
parser.add_argument('chkptdir', type=str, help="directory used for storing model checkpoints")
parser.add_argument('--arch', type=str, default="alexnet",
help="neural architecture used for training (alexnet (default), resnet, slapnicar, lstm)")
parser.add_argument('--lr', type=float, default=0.003, help="initial learning rate (default: 0.003)")
parser.add_argument('--batch_size', type=int, default=32, help="batch size used for training (default: 32)")
parser.add_argument('--winlen', type=int, default=875,
help="length of the ppg windows in samples (default: 875)")
parser.add_argument('--epochs', type=int, default=60,
help="maximum number of epochs for training (default: 60)")
parser.add_argument('--gpuid', type=str, default=None,
help="GPU-ID used for training in a multi-GPU environment (default: None)")
args = parser.parse_args()
architecture = args.arch
experiment_name = args.ExpName
experiment_name = datetime.now().strftime("%Y-%d-%m") + '_' + architecture + '_' + experiment_name
DataDir = args.datadir
ResultsDir = args.resultsdir
CheckpointDir = args.chkptdir
tb_tag = experiment_name
lr = args.lr if args.lr > 0 else None
batch_size = args.batch_size
win_len = args.winlen
N_epochs = args.epochs
if args.gpuid is not None:
environ["CUDA_VISIBLE_DEVICES"] = args.gpuid
else:
architecture = 'lstm'
experiment_name = datetime.now().strftime("%Y-%d-%m") + '_' + architecture + '_' + 'mimic_iii_ppg_nonmixed_pretrain'
HomePath = expanduser("~")
DataDir = join(HomePath,'data','MIMIC-III_BP', 'tfrecords_nonmixed')
ResultsDir = join(HomePath,'data','MIMIC-III_BP', 'results')
CheckpointDir = join(HomePath,'data','MIMIC-III_BP', 'checkpoints')
tb_tag = architecture + '_' + 'mimic_iii_ppg_pretrain'
batch_size = 64
win_len = 875
lr = None
N_epochs = 60
tfrecord_basename = 'MIMIC_III_ppg'
ppg_train_mimic_iii(architecture,
DataDir,
ResultsDir,
CheckpointDir,
tb_tag,
tfrecord_basename,
experiment_name,
win_len=win_len,
batch_size=batch_size,
lr=lr,
N_epochs=N_epochs,
UseDerivative=True,
earlystopping=False)