Skip to content

Create LLM agents with long-term memory and custom tools πŸ“šπŸ¦™

License

Notifications You must be signed in to change notification settings

Qbtrix-Innovations/MemGPT

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

MemGPT logo

MemGPT allows you to build LLM agents with long term memory & custom tools

Discord arxiv 2310.08560 Documentation

MemGPT makes it easy to build and deploy stateful LLM agents with support for:

You can also use MemGPT to depoy agents as a service. You can use a MemGPT server to run a multi-user, multi-agent application on top of supported LLM providers.

image

Installation & Setup

Install MemGPT:

pip install -U pymemgpt

To use MemGPT with OpenAI, set the environment variable OPENAI_API_KEY to your OpenAI key then run:

memgpt quickstart --backend openai

To use MemGPT with a free hosted endpoint, you run run:

memgpt quickstart --backend memgpt

For more advanced configuration options or to use a different LLM backend or local LLMs, run memgpt configure.

Quickstart (CLI)

You can create and chat with a MemGPT agent by running memgpt run in your CLI. The run command supports the following optional flags (see the CLI documentation for the full list of flags):

  • --agent: (str) Name of agent to create or to resume chatting with.
  • --first: (str) Allow user to sent the first message.
  • --debug: (bool) Show debug logs (default=False)
  • --no-verify: (bool) Bypass message verification (default=False)
  • --yes/-y: (bool) Skip confirmation prompt and use defaults (default=False)

You can view the list of available in-chat commands (e.g. /memory, /exit) in the CLI documentation.

Dev portal (alpha build)

MemGPT provides a developer portal that enables you to easily create, edit, monitor, and chat with your MemGPT agents. The easiest way to use the dev portal is to install MemGPT via docker (see instructions below).

image

Quickstart (Server)

Option 1 (Recommended): Run with docker compose

  1. Install docker on your system
  2. Clone the repo: git clone https://github.com/cpacker/MemGPT.git
  3. Run docker compose up
  4. Go to memgpt.localhost in the browser to view the developer portal

Option 2: Run with the CLI:

  1. Run memgpt server
  2. Go to localhost:8283 in the browser to view the developer portal

Once the server is running, you can use the Python client or REST API to connect to memgpt.localhost (if you're running with docker compose) or localhost:8283 (if you're running with the CLI) to create users, agents, and more. The service requires authentication with a MemGPT admin password, which can be set with running export MEMGPT_SERVER_PASS=password.

Supported Endpoints & Backends

MemGPT is designed to be model and provider agnostic. The following LLM and embedding endpoints are supported:

Provider LLM Endpoint Embedding Endpoint
OpenAI βœ… βœ…
Azure OpenAI βœ… βœ…
Google AI (Gemini) βœ… ❌
Anthropic (Claude) βœ… ❌
Groq βœ… (alpha release) ❌
Cohere API βœ… ❌
vLLM βœ… ❌
Ollama βœ… ❌
LM Studio βœ… ❌
koboldcpp βœ… ❌
oobabooga web UI βœ… ❌
llama.cpp βœ… ❌
HuggingFace TEI ❌ βœ…

When using MemGPT with open LLMs (such as those downloaded from HuggingFace), the performance of MemGPT will be highly dependent on the LLM's function calling ability. You can find a list of LLMs/models that are known to work well with MemGPT on the #model-chat channel on Discord, as well as on this spreadsheet.

Documentation

See full documentation at: https://memgpt.readme.io

Support

For issues and feature requests, please open a GitHub issue or message us on our #support channel on Discord.

Legal notices

By using MemGPT and related MemGPT services (such as the MemGPT endpoint or hosted service), you agree to our privacy policy and terms of service.

Roadmap

You can view (and comment on!) the MemGPT developer roadmap on GitHub: letta-ai#1200.

Benchmarking

To evaluate the performance of a model on MemGPT, simply configure the appropriate model settings using memgpt configure, and then initiate the benchmark via memgpt benchmark. The duration will vary depending on your hardware. This will run through a predefined set of prompts through multiple iterations to test the function calling capabilities of a model. You can help track what LLMs work well with MemGPT by contributing your benchmark results via this form, which will be used to update the spreadsheet.

About

Create LLM agents with long-term memory and custom tools πŸ“šπŸ¦™

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.9%
  • Other 1.1%