Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add RDNA Config #640

Merged
merged 4 commits into from
Oct 1, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
79 changes: 72 additions & 7 deletions python/perf-kernels/flash-attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
"""

import argparse
import subprocess
import pytest
import sys
import torch
Expand Down Expand Up @@ -299,8 +300,39 @@ def _attn_fwd_inner(acc, l_i, m_i, q, k_ptrs, v_ptrs, bias_ptrs, stride_kn, stri
return acc, l_i, m_i


@triton.autotune(
configs=[
def get_gfx_version():
try:
# Run the rocminfo command
result = subprocess.run(['rocminfo'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
output = result.stdout

# Parse the output to find the gfx version
for line in output.splitlines():
line = line.strip()
if line.startswith("Name: gfx"):
gfx_version = line.split("Name:")[1].strip()
return gfx_version
except Exception as e:
print(f"Error: {e}")
return None


def is_hip():
return triton.runtime.driver.active.get_current_target().backend == "hip"


def is_cdna():
return is_hip() and triton.runtime.driver.active.get_current_target().arch in ('gfx940', 'gfx941', 'gfx942',
'gfx90a', 'gfx908')


def is_rdna():
return is_hip() and triton.runtime.driver.active.get_current_target().arch in ("gfx1030", "gfx1100", "gfx1101",
"gfx1102", "gfx1200", "gfx1201")


def get_cdna_autotune_configs():
return [
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1,
num_warps=4),
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1,
Expand All @@ -314,8 +346,44 @@ def _attn_fwd_inner(acc, l_i, m_i, q, k_ptrs, v_ptrs, bias_ptrs, stride_kn, stri
# Fall-back config.
triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 1, 'PRE_LOAD_V': False}, num_stages=1,
num_warps=4),
],
key=['IS_CAUSAL', 'dropout_p', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K', 'ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'],
], ['IS_CAUSAL', 'dropout_p', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K', 'ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK']


def get_rdna_autotune_configs():
return [
triton.Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'waves_per_eu': 4, 'PRE_LOAD_V': False}, num_stages=1,
num_warps=2),
triton.Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1,
num_warps=2),
triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 4, 'PRE_LOAD_V': False}, num_stages=1,
num_warps=2),
triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1,
num_warps=2),
triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 4, 'PRE_LOAD_V': False}, num_stages=1,
num_warps=2),
triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1,
num_warps=2),
# Fall-back config.
triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 1, 'PRE_LOAD_V': False}, num_stages=1,
num_warps=2),
], ['IS_CAUSAL', 'dropout_p', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K', 'ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK']


def get_autotune_configs():
if is_rdna():
return get_rdna_autotune_configs()
elif is_cdna():
return get_cdna_autotune_configs()
else:
raise ValueError("Unknown Device Type")


autotune_configs, autotune_keys = get_autotune_configs()


@triton.autotune(
configs=autotune_configs,
key=autotune_keys,
use_cuda_graph=True,
)
@triton.jit
Expand Down Expand Up @@ -823,9 +891,6 @@ def _attn_bwd(Q, K, V, sm_scale, alibi_slopes, DO, DQ, DK, DV, M, D,
tl.store(DQ_block_ptr, dq.to(q.dtype))


empty = torch.empty(128, device="cuda")


def get_shape_from_layout(q, k, metadata):
if metadata.layout == 'thd':
nheads_q, nheads_k = q.shape[1], k.shape[1]
Expand Down
Loading