header-includes | |||||||||
---|---|---|---|---|---|---|---|---|---|
|
This repository contains the codes used for simulating the cases discussed in the manuscript: Lifting a sessile oil drop from a superamphiphobic surface with an impacting one (link).
You can use the following article citation:
@article{ramirez2020lifting,
title={Lifting a sessile oil drop from a superamphiphobic surface with an impacting one},
author={Ram{\'\i}rez-Soto, O. and Sanjay, V. and Lohse, D. and Pham, J. T. and Vollmer, D.},
journal={Science Advances},
volume={6},
number={34},
pages={eaba4330},
year={2020},
publisher={American Association for the Advancement of Science}
}
Note Use the raw source file available as dropOnDropImpact.c, present in all the folders in this repository to run simulations.
You need to install Basilisk C. Follow the installation steps here. In case of compatibility issues, please feel free to contact me: [email protected]. For post-processing codes, Python 3.X is required. The VoF facets in three-dimensions are plotted using an old implementation of Basilisk View (bview3D) using the Python 2.X interface. I am yet to test the code for the newer Javascript implementation of Basilisk (see: link).
We investigate the dynamics of an oil drop impacting an identical sessile drop sitting on a superamphiphobic surface. On this page, I am presenting the code that we used to simulate the process shown in the above video. For a more detailed documentation on the code included in the manuscript, please visit my Basilisk sandbox.
Here is a typical experiment:
-
Experimental Video: Impact of a hexadecane oil drop on another drop (of the same liquid) sitting on a superamphiphobic substrate. Experiment was done by Olinka Soto. Impact Weber number,
$We=1.44$ , and the offset between the axes of the two drops is 0.48 times the equivalent radius of the drops. -
Simulation Video: The process -- Impacting drop slides-off the sessile drop. It glides on the thin air layer. We model this non-coalescence effect by assuming two VoF tracers for the two drops.
$We = 1.50$ and$\chi = 0.25$ . - Simulation Video: Velocity Field
Id 1 is for the sessile drop, and Id 2 is mobile/impacting drop.
#include "grid/octree.h"
#include "navier-stokes/centered.h"
#define FILTERED // Smear density and viscosity jumps
To model non-coalescing drops, we use two different Volume of Fluid tracers (f1 and f2). For this, we use a modified version of two-phase.h. A proof-of-concept example is here.
#include "two-phaseDOD.h"
#include "tension.h"
#include "distance.h"
We use a modified adapt-wavelet algorithm available (here). It is written by César Pairetti (Thanks :)).
#include "adapt_wavelet_limited.h"
// maximum level
int MAXlevel = 12;
// minimum level
#define MINlevel 5
// timestep used to save simulation snapshot
#define tsnap (0.01)
// Error tolerances
// VOF
#define fErr (5e-4)
// curvature of sessile drop
#define K1Err (1e-4)
// curvature of impacting drop
#define K2Err (1e-4)
// velocity
#define VelErr (5e-3)
// viscosity and density ratios between the gas and the liquid
#define Mu21 (6e-3)
#define Rho21 (1./770)
// height of impacting drop from the substrate
#define Zdist (3.)
In the manuscript, offset parameter
#define Xoffset (0.50)
// Equation for the impacting drop
#define R2Drop(x,y,z) (sq(x-Xoffset) + sq(y) + sq(z-Zdist))
// Dimension of the domain
#define Ldomain 16
Back Wall is superamphiphobic and has the no-slip condition for velocity.
u.t[back] = dirichlet(0.);
u.r[back] = dirichlet(0.);
f1[back] = dirichlet(0.);
f2[back] = dirichlet(0.);
double tmax, We, Oh, Bo;
Weber number is based on the impact velocity,
Navier Stokes equation for this case:
$$
\partial_tU_i+\nabla\cdot(U_iU_j) =
\frac{1}{\hat{\rho}}\left(-\nabla p + Oh\nabla\cdot(2\hat{\mu}D_{ij}) + \kappa\delta_sn_i\right) + Bog_i
$$
The
Ohnesorge number
Bond number
Note: The subscript
Velocity scale as the intertial-capillary velocity, $$ U_\gamma = \sqrt{\frac{\gamma}{\rho_l R}} $$
int main() {
tmax = 7.5;
We = 1.375; // We is 1 for 0.1801875 m/s
// <770*0.1801875^2*0.001/0.025>
init_grid (1 << MINlevel);
L0=Ldomain;
Oh = 0.0216; // <0.003/sqrt(770*0.025*0.001)>
Bo = 0.308; // <770*10*0.001^2/0.025>
fprintf(ferr, "tmax = %g. We = %g\n",tmax, We);
rho1 = 1.0; mu1 = Oh;
rho2 = Rho21; mu2 = Mu21*Oh;
f1.sigma = 1.0; f2.sigma = 1.0;
run();
}
/**
This event is specific to César's adapt_wavelet_limited.
Near the substrate, we refine the grid one level higher
than the rest of the domain.
*/
int refRegion(double x, double y, double z){
return (z < 0.128 ? MAXlevel+1 : MAXlevel);
}
For Bond numbers
event init(t = 0){
if(!restore (file = "dump")){
char filename[60];
sprintf(filename,"Sessile-Bo0.3080.stl");
FILE * fp = fopen (filename, "r");
if (fp == NULL){
fprintf(ferr, "There is no file named %s\n", filename);
return 1;
}
coord * p = input_stl (fp);
fclose (fp);
coord min, max;
bounding_box(p, &min, &max);
fprintf(ferr, "xmin %g xmax %g\nymin %g ymax %g\nzmin %g zmax %g\n", min.x, max.x, min.y, max.y, min.z, max.z);
origin((min.x+max.x)/2. - L0/2, (min.y+max.y)/2. - L0/2, 0.); // We choose (X,Y) of origin as the center of the sessile drop. And substrate at Z = 0.
refine(R2Drop(x,y,z) < sq(1.+1./16) && level < MAXlevel);
fraction(f2, 1. - R2Drop(x,y,z));
scalar d[];
distance (d, p);
while (adapt_wavelet_limited ((scalar *){f2, d}, (double[]){1e-6, 1e-6*L0}, refRegion).nf);
vertex scalar phi[];
foreach_vertex(){
phi[] = (d[] + d[-1] + d[0,-1] + d[-1,-1] +
d[0,0,-1] + d[-1,0,-1] + d[0,-1,-1] + d[-1,-1,-1])/8.;
}
boundary ((scalar *){phi});
fractions (phi, f1);
foreach () {
u.z[] = -sqrt(We)*f2[];
u.y[] = 0.0;
u.x[] = 0.0;
}
boundary((scalar *){f1, f2, u.x, u.y});
dump (file = "dump");
/**
**Note:** I think [distance.h](http://basilisk.fr/src/distance.h) is not compatible with mpi. So, I ran the file to import .stl file and generate the dump file at t = 0 locally. For this, OpenMP multi-threading can be used.
*/
return 1;
}
}
Gravity is added as a body forces. It would be nice to use something like reduced.h. But, I could not figure out how to do it with two different VoF tracers.
event acceleration(i++) {
face vector av = a;
foreach_face(z){
av.z[] -= Bo;
}
}
event adapt(i++) {
/**
We refine based on curvatures of the two drops along with the generally used VoF and velocity fields. This ensures that the refinement level along the interface is MAXlevel.
*/
scalar KAPPA1[], KAPPA2[];
curvature(f1, KAPPA1);
curvature(f2, KAPPA2);
adapt_wavelet_limited ((scalar *){f1, f2, KAPPA1, KAPPA2, u.x, u.y, u.z},
(double[]){fErr, fErr, K1Err, K2Err, VelErr, VelErr, VelErr},
refRegion, MINlevel);
}
event writingFiles (t = 0; t += tsnap; t <= tmax) {
dump (file = "dump");
char nameOut[80];
sprintf (nameOut, "intermediate/snapshot-%5.4f", t);
dump (file = nameOut);
}
event logWriting (i++) {
double ke = 0.;
foreach (reduction(+:ke)){
ke += 0.5*(sq(u.x[]) + sq(u.y[]) + sq(u.z[]))*rho(f1[]+f2[])*cube(Delta);
}
static FILE * fp;
if (i == 0) {
fprintf (ferr, "i dt t ke\n");
fp = fopen ("log", "w");
fprintf (fp, "i dt t ke\n");
fprintf (fp, "%d %g %g %g\n", i, dt, t, ke);
fclose(fp);
} else {
fp = fopen ("log", "a");
fprintf (fp, "%d %g %g %g\n", i, dt, t, ke);
fclose(fp);
}
fprintf (ferr, "%d %g %g %g\n", i, dt, t, ke);
}
Use the following procedure:
Step 1: Importing the stl file and generating the first dump file
#!/bin/bash
mkdir intermediate
qcc -fopenmp -O2 -Wall dropOnDropImpact.c -o dropOnDropImpact -lm
export OMP_NUM_THREADS=8
./dropOnDropImpact
Step 2: Follow the method described (here). Do not forget to use the dump file generated in the previous step.
The post-processing codes and simulation data are available at: PostProcess