Skip to content

dkashkin/flutter_tflite

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tflite

A Flutter plugin for accessing TensorFlow Lite. Supports both iOS and Android.

Installation

Add tflite as a dependency in your pubspec.yaml file.

Android

In android/app/build.gradle file add the following setting in android block.

    aaptOptions {
        noCompress 'tflite'
    }

iOS

If you get error like "'vector' file not found", please open ios/Runner.xcworkspace in Xcode, click Runner > Tagets > Runner > Build Settings, search Compile Sources As, change the value to Objective-C++;

Usage

  1. Create a assets folder and place your label file and model file in it. In pubspec.yaml add:
  assets:
   - assets/labels.txt
   - assets/mobilenet_v1_1.0_224.tflite
  1. Import the library:
import 'package:tflite/tflite.dart';
  1. Load the model and labels:
String res = await Tflite.loadModel(
  model: "assets/mobilenet_v1_1.0_224.tflite",
  labels: "assets/labels.txt",
);
  1. Run the model on a image file:
var recognitions = await Tflite.runModelOnImage(
  path: filepath,   // required
  inputSize: 224,   // wanted input size, defaults to 224
  numChannels: 3,   // wanted input channels, defaults to 3
  imageMean: 127.5, // defaults to 117.0
  imageStd: 127.5,  // defaults to 1.0
  numResults: 6,    // defaults to 5
  threshold: 0.05,  // defaults to 0.1
  numThreads: 1,    // defaults to 1
);
  1. Release resources:
await Tflite.close();

Demo

Refer to the example.

About

Flutter plugin for TensorFlow Lite

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Objective-C++ 36.7%
  • Java 30.2%
  • Dart 17.0%
  • Ruby 12.4%
  • Objective-C 3.1%
  • C++ 0.6%