Skip to content

Distributed execution of bioinformatics tools on Apache Spark. Apache 2 licensed.

License

Notifications You must be signed in to change notification settings

dmaziec/cannoli

 
 

Repository files navigation

Cannoli

Distributed execution of bioinformatics tools on Apache Spark. Apache 2 licensed.

Maven Central API Documentation

Cannoli project logo

Hacking Cannoli

Install

To build

$ mvn install

Installing Cannoli

Cannoli is available in Conda via Bioconda, https://bioconda.github.io/

$ conda install cannoli

Cannoli is available in Homebrew via Brewsci/bio, https://github.com/brewsci/homebrew-bio

$ brew install brewsci/bio/cannoli

Cannoli is available in Docker via BioContainers, https://biocontainers.pro

$ docker pull quay.io/biocontainers/cannoli:{tag}

Find {tag} on the tag search page, https://quay.io/repository/biocontainers/cannoli?tab=tags

Using Cannoli interactively from the shell

To run the Cannoli interactive shell, based on the ADAM shell, which in turn extends the Apache Spark shell, use cannoli-shell.

Wildcard import from ADAMContext to add implicit methods to SparkContext for loading alignments, features, fragments, genotypes, reads, sequences, slices, variant contexts, or variants, such as sc.loadPairedFastqAsFragments below.

Wildcard import from Cannoli to add implicit methods for calling external commands to the genomic datasets loaded by ADAM, such as reads.alignWithBwaMem below.

$ ./bin/cannoli-shell \
    <spark-args>

scala> import org.bdgenomics.adam.rdd.ADAMContext._
import org.bdgenomics.adam.rdd.ADAMContext._

scala> import org.bdgenomics.cannoli.Cannoli._
import org.bdgenomics.cannoli.Cannoli._

scala> import org.bdgenomics.cannoli.BwaMemArgs
import org.bdgenomics.cannoli.BwaMemArgs

scala> val args = new BwaMemArgs()
args: org.bdgenomics.cannoli.BwaMemArgs = org.bdgenomics.cannoli.BwaMemArgs@54234569

scala> args.indexPath = "hg38.fa"
args.indexPath: String = hg38.fa

scala> args.sampleId = "sample"
args.sampleId: String = sample

scala> val reads = sc.loadPairedFastqAsFragments("sample1.fq", "sample2.fq")
reads: org.bdgenomics.adam.rdd.fragment.FragmentRDD = RDDBoundFragmentRDD with 0 reference
sequences, 0 read groups, and 0 processing steps

scala> val alignments = reads.alignWithBwaMem(args)
alignments: org.bdgenomics.adam.rdd.read.AlignmentRecordRDD = RDDBoundAlignmentRecordRDD with
0 reference sequences, 0 read groups, and 0 processing steps

scala> alignments.saveAsParquet("sample.alignments.adam")

Running Cannoli from the command line

To run Cannoli commands from the command line, use cannoli-submit.

Note the -- argument separator between Spark arguments and Cannoli command arguments.

$ ./bin/cannoli-submit --help

                              _ _ 
                             | (_)
   ___ __ _ _ __  _ __   ___ | |_ 
  / __/ _` | '_ \| '_ \ / _ \| | |
 | (_| (_| | | | | | | | (_) | | |
  \___\__,_|_| |_|_| |_|\___/|_|_|

Usage: cannoli-submit [<spark-args> --] <cannoli-args>

Choose one of the following commands:

CANNOLI
        bcftoolsCall : Call variant contexts with bcftools call.
     bcftoolsMpileup : Call variants from an alignment dataset with bcftools mpileup.
        bcftoolsNorm : Normalize variant contexts with bcftools norm.
   bedtoolsIntersect : Intersect the features in a feature dataset with Bedtools intersect.
              blastn : Align DNA sequences in a sequence dataset with blastn.
              bowtie : Align paired-end reads in a fragment dataset with Bowtie.
             bowtie2 : Align paired-end reads in a fragment dataset with Bowtie 2.
    singleEndBowtie2 : Align unaligned single-end reads in an alignment dataset with Bowtie 2.
              bwaMem : Align paired-end reads in a fragment dataset with bwa mem.
             bwaMem2 : Align paired-end reads in a fragment dataset with Bwa-mem2.
           freebayes : Call variants from an alignment dataset with Freebayes.
                 gem : Align paired-end reads in a fragment dataset with GEM-Mapper.
          magicBlast : Align paired-end reads in a fragment dataset with Magic-BLAST.
            minimap2 : Align paired-end reads in a fragment dataset with Minimap2.
     samtoolsMpileup : Call variants from an alignment dataset with samtools mpileup.
                snap : Align paired-end reads in a fragment dataset with SNAP.
              snpEff : Annotate variant contexts with SnpEff.
                star : Align paired-end reads in a fragment dataset with STAR-Mapper.
       singleEndStar : Align unaligned single-end reads in an alignment dataset with STAR-Mapper.
                 vep : Annotate variant contexts with Ensembl VEP.
         vtNormalize : Normalize variant contexts with vt normalize.

CANNOLI TOOLS
     interleaveFastq : Interleaves two FASTQ files.
         sampleReads : Sample reads from interleaved FASTQ format.

External commands wrapped by Cannoli should be installed to each executor node in the cluster

$ ./bin/cannoli-submit \
    <spark-args>
    -- \
    bwaMem \
    sample.unaligned.fragments.adam \
    sample.bwa.hg38.alignments.adam \
    -sample_id sample \
    -index hg38.fa \
    -sequence_dictionary hg38.dict \
    -fragments \
    -add_files

or can be run using Docker

$ ./bin/cannoli-submit \
    <spark-args>
    -- \
    bwaMem \
    sample.unaligned.fragments.adam \
    sample.bwa.hg38.alignments.adam \
    -sample_id sample \
    -index hg38.fa \
    -sequence_dictionary hg38.dict \
    -fragments \
    -use_docker \
    -image quay.io/biocontainers/bwa:0.7.17--hed695b0_7 \
    -add_files

or can be run using Singularity

$ ./bin/cannoli-submit \
    <spark-args>
    -- \
    bwaMem \
    sample.unaligned.fragments.adam \
    sample.bwa.hg38.alignments.adam \
    -sample_id sample \
    -index hg38.fa \
    -sequence_dictionary hg38.dict \
    -fragments \
    -use_singularity \
    -image quay.io/biocontainers/bwa:0.7.17--hed695b0_7 \
    -add_files

About

Distributed execution of bioinformatics tools on Apache Spark. Apache 2 licensed.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Scala 79.3%
  • Java 15.8%
  • Shell 4.9%