Skip to content

Commit

Permalink
Add inner hits support to semantic query (#111834) (#113693)
Browse files Browse the repository at this point in the history
Adds inner hits support to the semantic query through a restricted inner_hits parameter, which exposes from and size from the inner_hits options
  • Loading branch information
Mikep86 authored Sep 27, 2024
1 parent 64fd8ac commit 8ae094f
Show file tree
Hide file tree
Showing 10 changed files with 869 additions and 17 deletions.
5 changes: 5 additions & 0 deletions docs/changelog/111834.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
pr: 111834
summary: Add inner hits support to semantic query
area: Search
type: enhancement
issues: []
216 changes: 208 additions & 8 deletions docs/reference/query-dsl/semantic-query.asciidoc
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ GET my-index-000001/_search
}
}
------------------------------------------------------------
// TEST[skip:TBD]
// TEST[skip: Requires inference endpoints]


[discrete]
Expand All @@ -40,9 +40,209 @@ The `semantic_text` field to perform the query on.
(Required, string)
The query text to be searched for on the field.

`inner_hits`::
(Optional, object)
Retrieves the specific passages that match the query.
See <<semantic-query-passage-ranking, passage ranking with the `semantic` query>> for more information.
+
.Properties of `inner_hits`
[%collapsible%open]
====
`from`::
(Optional, integer)
The offset from the first matching passage to fetch.
Used to paginate through the passages.
Defaults to `0`.
`size`::
(Optional, integer)
The maximum number of matching passages to return.
Defaults to `3`.
====

Refer to <<semantic-search-semantic-text,this tutorial>> to learn more about semantic search using `semantic_text` and `semantic` query.

[discrete]
[[semantic-query-passage-ranking]]
==== Passage ranking with the `semantic` query
The `inner_hits` parameter can be used for _passage ranking_, which allows you to determine which passages in the document best match the query.
For example, if you have a document that covers varying topics:

[source,console]
------------------------------------------------------------
POST my-index/_doc/lake_tahoe
{
"inference_field": [
"Lake Tahoe is the largest alpine lake in North America",
"When hiking in the area, please be on alert for bears"
]
}
------------------------------------------------------------
// TEST[skip: Requires inference endpoints]

You can use passage ranking to find the passage that best matches your query:

[source,console]
------------------------------------------------------------
GET my-index/_search
{
"query": {
"semantic": {
"field": "inference_field",
"query": "mountain lake",
"inner_hits": { }
}
}
}
------------------------------------------------------------
// TEST[skip: Requires inference endpoints]

[source,console-result]
------------------------------------------------------------
{
"took": 67,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 1,
"relation": "eq"
},
"max_score": 10.844536,
"hits": [
{
"_index": "my-index",
"_id": "lake_tahoe",
"_score": 10.844536,
"_source": {
...
},
"inner_hits": { <1>
"inference_field": {
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 10.844536,
"hits": [
{
"_index": "my-index",
"_id": "lake_tahoe",
"_nested": {
"field": "inference_field.inference.chunks",
"offset": 0
},
"_score": 10.844536,
"_source": {
"text": "Lake Tahoe is the largest alpine lake in North America"
}
},
{
"_index": "my-index",
"_id": "lake_tahoe",
"_nested": {
"field": "inference_field.inference.chunks",
"offset": 1
},
"_score": 3.2726858,
"_source": {
"text": "When hiking in the area, please be on alert for bears"
}
}
]
}
}
}
}
]
}
}
------------------------------------------------------------
<1> Ranked passages will be returned using the <<inner-hits,`inner_hits` response format>>, with `<inner_hits_name>` set to the `semantic_text` field name.

By default, the top three matching passages will be returned.
You can use the `size` parameter to control the number of passages returned and the `from` parameter to page through the matching passages:

[source,console]
------------------------------------------------------------
GET my-index/_search
{
"query": {
"semantic": {
"field": "inference_field",
"query": "mountain lake",
"inner_hits": {
"from": 1,
"size": 1
}
}
}
}
------------------------------------------------------------
// TEST[skip: Requires inference endpoints]

[source,console-result]
------------------------------------------------------------
{
"took": 42,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 1,
"relation": "eq"
},
"max_score": 10.844536,
"hits": [
{
"_index": "my-index",
"_id": "lake_tahoe",
"_score": 10.844536,
"_source": {
...
},
"inner_hits": {
"inference_field": {
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 10.844536,
"hits": [
{
"_index": "my-index",
"_id": "lake_tahoe",
"_nested": {
"field": "inference_field.inference.chunks",
"offset": 1
},
"_score": 3.2726858,
"_source": {
"text": "When hiking in the area, please be on alert for bears"
}
}
]
}
}
}
}
]
}
}
------------------------------------------------------------

[discrete]
[[hybrid-search-semantic]]
==== Hybrid search with the `semantic` query
Expand Down Expand Up @@ -79,7 +279,7 @@ POST my-index/_search
}
}
------------------------------------------------------------
// TEST[skip:TBD]
// TEST[skip: Requires inference endpoints]

You can also use semantic_text as part of <<rrf,Reciprocal Rank Fusion>> to make ranking relevant results easier:

Expand Down Expand Up @@ -116,12 +316,12 @@ GET my-index/_search
}
}
------------------------------------------------------------
// TEST[skip:TBD]
// TEST[skip: Requires inference endpoints]


[discrete]
[[advanced-search]]
=== Advanced search on `semantic_text` fields
==== Advanced search on `semantic_text` fields

The `semantic` query uses default settings for searching on `semantic_text` fields for ease of use.
If you want to fine-tune a search on a `semantic_text` field, you need to know the task type used by the `inference_id` configured in `semantic_text`.
Expand All @@ -135,7 +335,7 @@ on a `semantic_text` field, it is not supported to use the `semantic_query` on a

[discrete]
[[search-sparse-inference]]
==== Search with `sparse_embedding` inference
===== Search with `sparse_embedding` inference

When the {infer} endpoint uses a `sparse_embedding` model, you can use a <<query-dsl-sparse-vector-query,`sparse_vector` query>> on a <<semantic-text,`semantic_text`>> field in the following way:

Expand All @@ -157,14 +357,14 @@ GET test-index/_search
}
}
------------------------------------------------------------
// TEST[skip:TBD]
// TEST[skip: Requires inference endpoints]

You can customize the `sparse_vector` query to include specific settings, like <<sparse-vector-query-with-pruning-config-and-rescore-example,pruning configuration>>.


[discrete]
[[search-text-inferece]]
==== Search with `text_embedding` inference
===== Search with `text_embedding` inference

When the {infer} endpoint uses a `text_embedding` model, you can use a <<query-dsl-knn-query,`knn` query>> on a `semantic_text` field in the following way:

Expand All @@ -190,6 +390,6 @@ GET test-index/_search
}
}
------------------------------------------------------------
// TEST[skip:TBD]
// TEST[skip: Requires inference endpoints]

You can customize the `knn` query to include specific settings, like `num_candidates` and `k`.
Original file line number Diff line number Diff line change
Expand Up @@ -225,6 +225,7 @@ static TransportVersion def(int id) {
public static final TransportVersion ILM_ADD_SEARCHABLE_SNAPSHOT_TOTAL_SHARDS_PER_NODE = def(8_749_00_0);
public static final TransportVersion SEMANTIC_TEXT_SEARCH_INFERENCE_ID = def(8_750_00_0);
public static final TransportVersion ML_INFERENCE_CHUNKING_SETTINGS = def(8_751_00_0);
public static final TransportVersion SEMANTIC_QUERY_INNER_HITS = def(8_752_00_0);

/*
* STOP! READ THIS FIRST! No, really,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -50,9 +50,9 @@ public final class InnerHitBuilder implements Writeable, ToXContentObject {
public static final ParseField COLLAPSE_FIELD = new ParseField("collapse");
public static final ParseField FIELD_FIELD = new ParseField("field");

public static final int DEFAULT_FROM = 0;
public static final int DEFAULT_SIZE = 3;
private static final boolean DEFAULT_IGNORE_UNAMPPED = false;
private static final int DEFAULT_FROM = 0;
private static final int DEFAULT_SIZE = 3;
private static final boolean DEFAULT_VERSION = false;
private static final boolean DEFAULT_SEQ_NO_AND_PRIMARY_TERM = false;
private static final boolean DEFAULT_EXPLAIN = false;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import org.elasticsearch.features.FeatureSpecification;
import org.elasticsearch.features.NodeFeature;
import org.elasticsearch.xpack.inference.mapper.SemanticTextFieldMapper;
import org.elasticsearch.xpack.inference.queries.SemanticQueryBuilder;
import org.elasticsearch.xpack.inference.rank.random.RandomRankRetrieverBuilder;
import org.elasticsearch.xpack.inference.rank.textsimilarity.TextSimilarityRankRetrieverBuilder;

Expand All @@ -25,7 +26,8 @@ public Set<NodeFeature> getFeatures() {
return Set.of(
TextSimilarityRankRetrieverBuilder.TEXT_SIMILARITY_RERANKER_RETRIEVER_SUPPORTED,
RandomRankRetrieverBuilder.RANDOM_RERANKER_RETRIEVER_SUPPORTED,
SemanticTextFieldMapper.SEMANTIC_TEXT_SEARCH_INFERENCE_ID
SemanticTextFieldMapper.SEMANTIC_TEXT_SEARCH_INFERENCE_ID,
SemanticQueryBuilder.SEMANTIC_TEXT_INNER_HITS
);
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@
import org.elasticsearch.index.mapper.ValueFetcher;
import org.elasticsearch.index.mapper.vectors.DenseVectorFieldMapper;
import org.elasticsearch.index.mapper.vectors.SparseVectorFieldMapper;
import org.elasticsearch.index.query.InnerHitBuilder;
import org.elasticsearch.index.query.MatchNoneQueryBuilder;
import org.elasticsearch.index.query.NestedQueryBuilder;
import org.elasticsearch.index.query.QueryBuilder;
Expand All @@ -54,6 +55,7 @@
import org.elasticsearch.xcontent.XContentParserConfiguration;
import org.elasticsearch.xpack.core.ml.inference.results.MlTextEmbeddingResults;
import org.elasticsearch.xpack.core.ml.inference.results.TextExpansionResults;
import org.elasticsearch.xpack.inference.queries.SemanticQueryInnerHitBuilder;

import java.io.IOException;
import java.util.ArrayList;
Expand Down Expand Up @@ -468,7 +470,12 @@ public boolean fieldHasValue(FieldInfos fieldInfos) {
return fieldInfos.fieldInfo(getEmbeddingsFieldName(name())) != null;
}

public QueryBuilder semanticQuery(InferenceResults inferenceResults, float boost, String queryName) {
public QueryBuilder semanticQuery(
InferenceResults inferenceResults,
float boost,
String queryName,
SemanticQueryInnerHitBuilder semanticInnerHitBuilder
) {
String nestedFieldPath = getChunksFieldName(name());
String inferenceResultsFieldName = getEmbeddingsFieldName(name());
QueryBuilder childQueryBuilder;
Expand Down Expand Up @@ -524,7 +531,10 @@ public QueryBuilder semanticQuery(InferenceResults inferenceResults, float boost
};
}

return new NestedQueryBuilder(nestedFieldPath, childQueryBuilder, ScoreMode.Max).boost(boost).queryName(queryName);
InnerHitBuilder innerHitBuilder = semanticInnerHitBuilder != null ? semanticInnerHitBuilder.toInnerHitBuilder() : null;
return new NestedQueryBuilder(nestedFieldPath, childQueryBuilder, ScoreMode.Max).boost(boost)
.queryName(queryName)
.innerHit(innerHitBuilder);
}

private String generateQueryInferenceResultsTypeMismatchMessage(InferenceResults inferenceResults, String expectedResultsType) {
Expand Down
Loading

0 comments on commit 8ae094f

Please sign in to comment.