py.ml
provides OCaml bindings for Python 2 and Python 3.
This library subsumes the pycaml
library, which is no longer
actively maintained.
OPAM: opam install pyml
The Python library is linked at runtime and the same executable can be
run in a Python 2 or a Python 3 environment. py.ml
does not
require any Python library at compile time.
The only compile time dependency is
Stdcompat
to ensure compatibility
with all OCaml compiler versions from 3.12.
Bindings are split in three modules:
-
Py
provides the initialization functions and some high-level bindings, with error handling and naming conventions closer to OCaml usages. -
Pycaml
provides a signature close to the oldPycaml
module, so as to ease migration. -
Pywrappers
provides low-level bindings, which follow closely the conventions of the C bindings for Python. SubmodulesPywrappers.Python2
andPywrappers.Python3
contain version-specific bindings.
A custom top-level with the C bindings can be compiled by make pymltop
.
If you have utop
and ocamlfind
, you can make pymlutop
.
For OPAM users: pymltop
is installed by default by opam install pyml
.
pymlutop
is installed whenever utop
is available.
Py.initialize ()
loads the Python library.
Py.Run.simple_string "print('Hello, world!')"
executes a Python phrase
and returns true
if the execution succeeded, false
otherwise.
Py.Run.eval "18 + 42"
evaluates a Python phrase and returns a value
of type Py.Object.t
. Such a value can then be converted to an OCaml
value: assert (Py.Int.to_int (Py.Run.eval "18 + 42") = 60)
. In case of
error (either the phrase is syntactically incorrect or the evaluation raises
an exception), an OCaml exception Py.E (type, msg)
is raised. By default,
Py.Run.eval
evaluates an expression; use
Py.Run.eval ~start:Py.File
to evaluate a Python phrase as a module/file
(with import
directives and so on).
To make an OCaml value accessible from Python, we create a module (called
ocaml
in this example, but it can be any valid Python module name):
let m = Py.Import.add_module "ocaml" in
Py.Module.set m "example_value"
(Py.List.of_list_map Py.Int.of_int [1;2;3]);
Py.Run.eval ~start:Py.File "
from ocaml import example_value
print(example_value)"
OCaml functions can be passed in the same way.
let m = Py.Import.add_module "ocaml" in
let hello args =
Printf.printf "Hello, %s!\n" (Py.String.to_string args.(0));
Py.none in
Py.Module.set m "hello" (Py.Callable.of_function hello);
Py.Run.eval ~start:Py.File "
from ocaml import hello
hello('World')"
Py.Module.set m "hello" (Py.Callable.of_function hello)
can be written
Py.Module.set_function m "hello" hello
.
Python functions can be called from OCaml too.
let builtins = Py.Eval.get_builtins () in
let sorted_python = Py.Dict.find_string builtins "sorted" in
let sorted = Py.Callable.to_function sorted_python in
let result =
sorted [| Py.List.of_list_map Py.Float.of_float [3.0; 2.0] |] in
assert (Py.List.to_list_map Py.Float.to_float result = [2.0; 3.0])
Py.Run.interactive ()
runs the Python top-loop.
It can be run after some OCaml values have been made accessible through a module
as above. If IPython is available, the top-loop can be run with
Py.Run.ipython ()
.
With OCaml 4.06 and greater, the module Pyops
declares indexing operators.
Indexing operator | Getter | Setter |
---|---|---|
x.@(v) |
Py.Object.find_attr |
Py.Object.set_attr |
x.@$(v) |
Py.Object.find_attr_string / Py.Module.get |
Py.Object.set_attr_string / Py.Module.set |
x.![v] |
Py.Object.find |
Py.Object.set_item |
x.!$[v] |
Py.Object.find_string |
Py.Object.set_item_string |
x.%[v] |
Py.Dict.find |
Py.Dict.set_item |
x.%$[v] |
Py.Dict.find_string |
Py.Dict.set_item_string |
x.&(v) |
Py.Module.get_function |
Py.Module.set_function |
The "hello world" example above can be written:
let m = Py.Import.add_module "ocaml" in
let open Pyops in
m.&("hello") <- (fun args ->
Printf.printf "Hello, %s!\n" (Py.String.to_string args.(0));
Py.none);
Py.Run.eval ~start:Py.File "
from ocaml import hello
hello('World')"
All Python exceptions are caught as OCaml exceptions Py.E (type, msg)
, where
type
and msg
are two Python objects. Typically, one can convert type
and msg
to strings with Py.Object.to_string
to display or analyse them.
When an OCaml function f
is called from Python
(passed by Py.Callable.of_function
),
f
can raise a Python exception by raising an OCaml exception of the form
Py.E (type, msg)
. To raise standard errors more conveniently,
f
can raise an exception of the form
Py.Err (type, msg)
instead,
where type
belongs to the enumeration Py.Err.t
and msg
is an OCaml string.
If f
raises an exception that is neither
of the form Py.E
nor Py.Err
, then
this exception is encapsulated with its backtrace in a Python exception
(of class ocaml exception
derived from BaseException
and not from
Exception
, so as not to be caught), leading the Python interpreter to
be interrupted, and the exception is raised back in OCaml.
Py.Run.simple_string
catches all Python exceptions (and OCaml
exceptions as well) and returns a single Boolean to indicate
success. One can prefer Py.Run.eval
to get proper error handling.
Python values have type Py.Object.t
.
Py.String.of_string
and Py.String.to_string
convert back and forth
OCaml to Python strings: Unicode strings and legacy strings are handled
uniformly.
Py.Int.of_int
and Py.Int.to_int
convert back and forth
OCaml to Python integers. For big numbers, one should use an intermediate
textual representation with Py.Int.of_string
and Py.Int.to_string
.
Py.Float.of_float
and Py.Float.to_float
convert back and forth
OCaml to Python floating-point values.
The module Py.Number
define common arithmetic and bitwise operations on
Python numbers. It can be open locally to take benefit from operator
overloading. E.g.:
let m = Py.Import.add_module "ocaml" in
let square args = Py.Number.(args.(0) ** of_int 2) in
Py.Module.set_function m "square" square;
ignore (Py.Run.eval ~start:Py.File "
from ocaml import square
print(square(3))")
Py.Tuple.of_array
and Py.Tuple.to_array
can be used to construct
and destruct Python tuples.
Py.Tuple.of_list
and Py.Tuple.to_list
are available as well.
The empty tuple is Py.Tuple.empty
.
Converters can be composed with the _map
suffix:
for example, Py.Tuple.of_list_map Py.Int.of_int
converts a list of integers
to a Python value.
Short tuples can be constructed and destructed with Py.Tuple.of_tuple1
,
..., Py.Tuple.of_tuple5
and Py.Tuple.to_tuple1
, ...,
Py.Tuple.to_tuple5
.
For Python lists,
Py.List.of_array
, Py.List.to_array
,
Py.List.of_list
and Py.List.to_list
are available
(along with their _map
variant).
Py.List
and Py.Tuple
include the Py.Sequence
module:
along with to_array
and to_list
, iterators like fold_left
fold_right
, for_all
, etc. are available.
Python iterators can be iterated with Py.Iter.next
which returns an option
value, where None
represents the end of the iteration. Py.Iter.iter
,
Py.Iter.fold_left
,Py.Iter.fold_right
and Py.Iter.to_list
can be
used as well. A Python iterator can be created with Py.Iter.create
from an
OCaml function that returns an option.
Python dictionaries can be constructed and destructed with
Py.Dict.of_bindings_string
and Py.Dict.to_bindings_string
from and to
associative lists between string keys and Python values.
Py.Dict.find_string
can be used to find a single value (the exception
Not_found
is raised if the key is not in the dictionary;
Py.Dict.get_item_string
provides the option variant).
Python closures can be called from OCaml with
Py.Callable.to_function
, or Py.Callable.to_function_with_keywords
to
pass keywords as an associative list.
Symmetrically, OCaml functions can be turned into Python closures
with
Py.Callable.of_function
and Py.Callable.of_function_with_keywords
(the latter function passes keywords as a dictionary to the OCaml callback:
values can be retrieved efficiently with Py.Dict.find_string
).
let m = Py.Import.add_module "ocaml" in
Py.Module.set_function_with_keywords m "length"
(fun args kw ->
let x = Py.Dict.find_string kw "x" in
let y = Py.Dict.find_string kw "y" in
Py.Number.((x ** of_int 2 + y ** of_int 2) ** of_float 0.5));
ignore (Py.Run.eval ~start:Py.File "
from ocaml import length
print(length(x=3, y=4))")
New modules can be defined with Py.Import.add_module
and existing modules can be imported with Py.Import.import_module
(or the shorter Py.import
alias).
Trying to import a module that does not exist leads to a Python exception:
use Py.Import.import_module_opt
to get an option result instead
(or the shorter Py.import_opt
alias).
Module.get
and Module.set
allow to retrieve and define module
members.
For function members, there are shortcuts to do the conversion with
Py.Callable
: Module.get_function
and Module.set_function
(and Module.get_function_with_keywords
and Module.set_function_with_keywords
).
If we consider the following Python code taken from matplotlib
documentation:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 5, 0.1);
y = np.sin(x)
plt.plot(x, y)
plt.show()
The code can be written directly in OCaml as such:
let np = Py.import "numpy" in
let plt = Py.import "matplotlib.pyplot" in
let x = Py.Module.get_function np "arange"
(Array.map Py.Float.of_float [| 0.; 5.; 0.1 |]) in
let y = Py.Module.get_function np "sin" [| x |] in
ignore (Py.Module.get_function plt "plot" [| x; y |]);
assert (Py.Module.get_function plt "show" [| |] = Py.none)
or, using indexing operators (OCaml 4.06):
let np = Py.import "numpy" in
let plt = Py.import "matplotlib.pyplot" in
let open Pyops in
let x = np.&("arange")(Array.map Py.Float.of_float [| 0.; 5.; 0.1 |]) in
let y = np.&("sin")[| x |] in
ignore (plt.&("plot")[| x; y |]);
assert (plt.&("show")[| |] = Py.none)
If the NumPy library is installed, then OCaml float arrays and bigarrays can be shared in place with Python code as NumPy arrays (without copy). Python code can then directly read and write from and to the OCaml arrays and changes are readable from OCaml.
let array = [| 1.; 2. ; 3. |] in
let m = Py.Import.add_module "ocaml" in
Py.Module.set m "array" (Py.Array.numpy array);
ignore (Py.Run.eval ~start:Py.File "
from ocaml import array
array *= 2");
assert (array = [| 2.; 4.; 6. |])
Bigarrays are handled by the Numpy
module that is shipped in
numpy.cma/cmxa
and requires bigarray.cma/cmxa
. Numpy arrays can
be obtained from bigarrays with Numpy.of_bigarray
and bigarrays can
be obtained from Numpy arrays with Numpy.to_bigarray
(the provided
kind and layout should match the format of the Numpy array).
let m = Py.Import.add_module "test" in
let callback arg =
let bigarray =
Numpy.to_bigarray Bigarray.nativeint Bigarray.c_layout arg.(0) in
let array1 = Bigarray.array1_of_genarray bigarray in
assert (Bigarray.Array1.get array1 0 = 0n);
assert (Bigarray.Array1.get array1 1 = 1n);
assert (Bigarray.Array1.get array1 2 = 2n);
assert (Bigarray.Array1.get array1 3 = 3n);
Py.none in
Py.Module.set m "callback" (Py.Callable.of_function callback);
assert (Py.Run.simple_string "
from test import callback
import numpy
callback(numpy.array([0,1,2,3]))
")