Skip to content

tsotfsk/SIGIR_2021_ECOM_RANK_3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Solution of SIGIR Ecom Data Challenge 2021

Overview

Coveo hosts the 2021 SIGIR eCom Data Challenge

Requirements

  • torch==1.8.1

  • tqdm==4.60.0

  • numpy==1.20.2

  • boto3==1.15.8

  • python-dotenv==0.13.0

Getting Started

mkdir saved log results
mkdir dataset & cd dataset
mkdir new prepared raw

The path of raw dataset is ./dataset/raw

Pre-Process

Run the scripts in ./scripts

Models

txt embedding

 python train.py --model GRU4Rec --device 0 --lr 1e-4 --seq_mode sku --commit txt
 python train.py --model GRU4Rec --device 0 --lr 1e-4 --seq_mode sku --commit txt --evaluate

deepwalk embedding(url-sess-item)

 python train.py --model GRU4Rec --device 0 --lr 1e-4 --seq_mode sku --commit dw
 python train.py --model GRU4Rec --device 0 --lr 1e-4 --seq_mode sku --commit dw --evaluate

deepwalk embedding(item-item)

 python train.py --model GRU4Rec --device 0 --lr 1e-4 --seq_mode sku --commit dw_i-i
 python train.py --model GRU4Rec --device 0 --lr 1e-4 --seq_mode sku --commit dw_i-i --evaluate

rand embedding

 python train.py --model GRU4Rec --device 0 --lr 1e-4 --seq_mode sku --commit rand
 python train.py --model GRU4Rec --device 0 --lr 1e-4 --seq_mode sku --commit rand --evaluate

Post-Process

Run ensemble.ipynb

About

My solution for SIGIR 2021 Ecom Data Challenge

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published